1
|
Liu Q, Teng K, Zhang Y, Lv Y, Chi YR, Jin Z. Chemodivergent Parallel Kinetic Resolution of Paracyclophanes: Enantiomer Fishing with Different Substrates. Angew Chem Int Ed Engl 2024; 63:e202406386. [PMID: 39052016 DOI: 10.1002/anie.202406386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
An unprecedented chemodivergent strategy for parallel kinetic resolution (PKR) is disclosed through which two planar chiral products bearing different structures were simultaneously afforded with opposite stereoselectivities. Two achiral esters are activated by one single chiral N-heterocyclic carbene (NHC) catalyst to react with the different enantiomers of the racemic imine substrate in a parallel fashion. Two products bearing distinct structures and opposite stereoselectivities are respectively afforded from the same reaction system in good to excellent yields, enantio- and diastereoselectivities. Control experiments and kinetic studies are carried out to probe the kinetic and dynamic properties during the reaction progress. The planar chiral pyridine and lactam products show interesting applications in both asymmetric synthesis and pesticide development.
Collapse
Grants
- 2022YFD1700300 National Key Research and Development Program of China
- 22371057, 32172459 National Natural Science Foundation of China
- Qiankehejichu-ZK [2021]Key033 Science and Technology Department of Guizhou Province
- Qiankehezhongyindi (2024) 007, (2023)001 The Central Government Guides Local Science and Technology Development Fund Projects
- Qiankehechengguo(2024)zhongda007 The Program of Major Scientific and Technological, Guizhou Province
- 2021005 Yongjiang Plan for Innovation and Entrepreneurship Leading Talent Project in the City of Nanning
- Qianjiaohe KY number (2020)004 Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
- [2016]5649 The 10 Talent Plan (Shicengci) of Guizhou Province at at Guizhou University
- 111 Program, D20023 The Program of Introducing Talents of Discipline to Universities of China at Guizhou University
- NRF-NRFI2016-06, NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- RG7/20, RG5/19, MOE2019-T2-2-117, MOE2018-T3-1-003 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2 , and MOE AcRF Tier 3 Award.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kunpeng Teng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ya Lv
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Liu J, Du YY, He YS, Liang Y, Liu SZ, Li YY, Cao YM. Parallel kinetic resolution of aziridines via chiral phosphoric acid-catalyzed apparent hydrolytic ring-opening. Chem Sci 2023; 14:12152-12159. [PMID: 37969581 PMCID: PMC10631200 DOI: 10.1039/d3sc03899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
We report a chiral phosphoric acid catalyzed apparent hydrolytic ring-opening reaction of racemic aziridines in a regiodivergent parallel kinetic resolution manner. Harnessing the acyloxy-assisted strategy, the highly stereocontrolled nucleophilic ring-opening of aziridines with water is achieved. Different kinds of aziridines are applicable in the process, giving a variety of enantioenriched aromatic or aliphatic amino alcohols with up to 99% yields and up to >99.5 : 0.5 enantiomeric ratio. Preliminary mechanistic study as well as product elaborations were inducted as well.
Collapse
Affiliation(s)
- Juan Liu
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Ying Du
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yu-Shi He
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yan Liang
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Shang-Zhong Liu
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Yi Li
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Ming Cao
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| |
Collapse
|
3
|
Yamashita K, Hirokawa R, Ichikawa M, Hisanaga T, Nagao Y, Takita R, Watanabe K, Kawato Y, Hamashima Y. Mechanistic Details of Asymmetric Bromocyclization with BINAP Monoxide: Identification of Chiral Proton-Bridged Bisphosphine Oxide Complex and Its Application to Parallel Kinetic Resolution. J Am Chem Soc 2022; 144:3913-3924. [PMID: 35226811 DOI: 10.1021/jacs.1c11816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of our previously reported catalytic asymmetric bromocyclization reactions using 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) monoxide was examined in detail by the means of control experiments, NMR studies, X-ray structure analysis, and CryoSpray electrospray ionization mass spectrometry (ESI-MS) analysis. The chiral BINAP monoxide was transformed to a key catalyst precursor, proton-bridged bisphosphine oxide complex (POHOP·Br), in the presence of N-bromosuccinimide (NBS) and contaminating water. The thus-formed POHOP further reacts with NBS to afford BINAP dioxide and molecular bromine (Br2) simultaneously in equimolar amounts. While the resulting Br2 is activated by NBS to form a more reactive brominating reagent (Br2─NBS), BINAP dioxide serves as a bifunctional catalyst, acting as both a Lewis base that reacts with Br2─NBS to form a chiral brominating agent (P═O+─Br) and also as a Brønsted base for the activation of the substrate. By taking advantage of this novel concerted Lewis/Brønsted base catalysis by BINAP dioxide, we achieved the first regio- and chemodivergent parallel kinetic resolutions (PKRs) of racemic unsymmetrical bisallylic amides via bromocyclization.
Collapse
Affiliation(s)
- Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Hirokawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mamoru Ichikawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsunari Hisanaga
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshihiro Nagao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Kawato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
4
|
Liu H, Shen C, Chang X, Wang C. Recent Advances in Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions with Kinetic Resolution. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Berry SS, Jones S. Current applications of kinetic resolution in the asymmetric synthesis of substituted pyrrolidines. Org Biomol Chem 2021; 19:10493-10515. [PMID: 34842884 DOI: 10.1039/d1ob01943k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chiral substituted pyrrolidines are key elements in various biologically active molecules and are therefore valuable synthetic targets. One traditional method towards enantiomerically pure compounds is the application of kinetic resolution. In this review, current KR methodology used in the synthesis of substituted pyrrolidines is surveyed, including enzymatic methods, cycloadditions and reduction of ketones.
Collapse
Affiliation(s)
- Sian S Berry
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| |
Collapse
|
6
|
Suzuki Y, Kanemoto K, Inoue A, Imae K, Fukuzawa SI. Silver/ThioClickFerrophos-Catalyzed 1,3-Dipolar Cycloaddition and Tandem Addition-Elimination Reaction of Morita-Baylis-Hillman Adducts. J Org Chem 2021; 86:14586-14596. [PMID: 34661412 DOI: 10.1021/acs.joc.1c01440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The asymmetric 1,3-dipolar cycloaddition of glycine imino esters to Morita-Baylis-Hillman (MBH) adducts or acetylated MBH adducts is described. The reaction was efficiently catalyzed by AgOAc/(R,Sp)-ThioClickFerrophos at room temperature to afford pyrrolidine derivatives bearing a quaternary carbon as a single diastereomer with excellent enantioselectivity. When a cyclic pyrroline ester was used as the nucleophile instead of a glycine imino ester, the enantioselective tandem addition-elimination reaction with an acetylated MBH adduct proceeded with an excellent yield and enantioselectivity, resulting in the formation of an exo-olefin. The wide substrate scope of these reactions and the transformability of the products enable expeditious access to divergent multifunctionalized pyrrolidines in an optically pure fashion.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ayana Inoue
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazumi Imae
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shin-Ichi Fukuzawa
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
7
|
Liao K, Gong Y, Zhu R, Wang C, Zhou F, Zhou J. Highly Enantioselective CuAAC of Functional Tertiary Alcohols Featuring an Ethynyl Group and Their Kinetic Resolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kui Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Yi Gong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ren‐Yi Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Cai Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
8
|
Liao K, Gong Y, Zhu R, Wang C, Zhou F, Zhou J. Highly Enantioselective CuAAC of Functional Tertiary Alcohols Featuring an Ethynyl Group and Their Kinetic Resolution. Angew Chem Int Ed Engl 2021; 60:8488-8493. [DOI: 10.1002/anie.202016286] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Kui Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Yi Gong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ren‐Yi Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Cai Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
9
|
Ye F, Xu Z, Xu LW. The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers. Acc Chem Res 2021; 54:452-470. [PMID: 33375791 DOI: 10.1021/acs.accounts.0c00740] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of highly effective chiral ligands is a key topic in enhancing the catalytic activity and selectivity in metal-catalyzed asymmetric synthesis. Traditionally, the difficulty of ligand synthesis, insufficient accuracy in controlling the stereoselectivity, and poor universality of the systems often become obstacles in this field. Using the concept of nonequivalent coordination to the metal, our group has designed and synthesized a series of new chiral catalysts to access various carbon/silicon and/or multiple stereogenic centers containing products with excellent chemo-, diastereo-, and enantioselectivity.In this Account, we summarize a series of new phosphine ligands with multiple stereogenic centers that have been developed in our laboratory. These ligands exhibited good to excellent performance in the transition-metal-catalyzed enantioselective construction of quaternary carbon/silicon and multiple stereogenic centers. In the first section, notable examples of the design and synthesis of new chiral ligands by non-covalent interaction-based multisite activation are described. The integrations of axial chirality, atom-centered chirality, and chiral anions and multifunctional groups into a single scaffold are individually highlighted, as represented by Ar-BINMOLs and their derivative ligands, HZNU-Phos, Fei-Phos, and Xing-Phos. In the second, third, and fourth sections, the enantioselective construction of quaternary carbon stereocenters, multiple stereogenic centers, and silicon stereogenic centers using our newly developed chiral ligands is summarized. These sections refer to detailed reaction information in the chiral-ligand-controlled asymmetric catalysis based on the concept of nonequivalent coordination with multisite activation. Accordingly, a wide array of transition metal and main-group metal catalysts has been applied to the enantioselective synthesis of chiral heterocycles, amino acid derivatives, cyclic ketones, alkenes, and organosilicon compounds bearing one to five stereocenters.This Account shows that this new model of multifunctional ligand-controlled catalysts exhibits excellent stereocontrol and catalytic efficiency, especially in a stereodivergent and atom-economical fashion. Furthermore, a brief mechanistic understanding of the origin of enantioselectivity from our newly developed chiral catalyst systems could inspire further development of new ligands and enhancement of enantioselective synthesis by asymmetric metal catalysis.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
10
|
Ma JH, Li L, Sun YL, Xu Z, Bai XF, Yang KF, Cao J, Cui YM, Yin GW, Xu LW. Silicon-mediated enantioselective synthesis of structurally diverse α-amino acid derivatives. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Wu SL, Li N, Yin GW, Xu Z, Ye F, Li L, Cui YM, Xu LW. Catalytic asymmetric cycloaddition of unsymmetrical EWG-activated alkenes to fully substituted pyrrolidines bearing three different carbonyl groups. Chem Commun (Camb) 2019; 55:14363-14366. [PMID: 31720613 DOI: 10.1039/c9cc07738c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A unique 1,3-dipolar [3+2] cycloaddition of alkyl 4-oxo-4-arylbut-2-enoates bearing two different electron-withdrawing groups was completed by using the silver/(R)-DTBM-Segphos catalyst system, which gives the corresponding fully substituted pyrrolidines with four stereogenic centers in good yields and with excellent enantioselectivities (up to 98% ee).
Collapse
Affiliation(s)
- Shi-Lu Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang Y, Jia S, Li EQ, Duan Z. Phosphine/Palladium Cooperative Catalysis: (4 + 3) Annulations of Morita–Baylis–Hillman Carbonates and Vinyl Benzoxazinanones. J Org Chem 2019; 84:15323-15330. [DOI: 10.1021/acs.joc.9b02349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yue Wang
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Siming Jia
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
13
|
Chang X, Sun XS, Che C, Hu YZ, Tao HY, Wang CJ. Copper(I)-Catalyzed Kinetic Resolution of exo-3-Oxodicyclopentadienes and endo-3-Oxodicyclopentadiene. Org Lett 2019; 21:1191-1196. [PMID: 30707591 DOI: 10.1021/acs.orglett.9b00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first example of highly efficient kinetic resolution of exo-3-oxodicyclopentadienes and endo-3-oxodicyclopentadiene has been developed by means of Cu(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylide. Compared with the existing methodologies for those synthetically important optically active convex molecules, the current protocol provides an alternative but more practical approach from the readily available racemic starting materials, which is free from the repetitive reduction/oxidation steps in the enzymatic resolution or the indispensable stoichiometric amount of chirality-induction reagents.
Collapse
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xi-Shang Sun
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chao Che
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yuan-Zheng Hu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China.,State Key Laboratory of Elemento-organic Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
14
|
Deng H, Jia R, Yang WL, Yu X, Deng WP. Ligand-controlled switch in diastereoselectivities: catalytic asymmetric construction of spirocyclic pyrrolidine-azetidine/oxe(thie)tane derivatives. Chem Commun (Camb) 2019; 55:7346-7349. [DOI: 10.1039/c9cc03589c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An asymmetric [3+2] cycloaddition of azomethine ylides with four-membered ring-containing dipolarophiles was developed, and either exo or endo spirocyclic pyrrolidine-azetidine/oxe(thie)tanes were obtained.
Collapse
Affiliation(s)
- Hua Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Renmeng Jia
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xingxin Yu
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
15
|
Shen C, Yang Y, Wei L, Dong WW, Chung LW, Wang CJ. Kinetic Resolution of Alkylidene Norcamphors via a Ligand-Controlled Umpolung-Type 1,3-Dipolar Cycloaddition. iScience 2018; 11:146-159. [PMID: 30612034 PMCID: PMC6317281 DOI: 10.1016/j.isci.2018.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022] Open
Abstract
Development of a general catalytic and highly efficient method utilizing readily available precursors for the regio- and stereoselective construction of bioactive natural-product-inspired spiro architectures remains a formidable challenge in chemical research. Transition metal-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides produces numerous N-heterocycles, but reaction control with the regioselectivity opposite to the conventional fashion has rarely been demonstrated. Herein, we report a unique ligand-controlled Cu(I)-catalyzed umpolung-type 1,3-dipolar cycloaddition of azomethine ylide to realize efficient kinetic resolution of racemic alkylidene norcamphors with the concomitant construction of previously inaccessible spiro N-heterocycles with high levels of regio- and stereoselectivity. The success of this methodology relies on the strategy of kinetic resolution, and the serendipitous discovery of a unique ligand-enabled regiospecific cycloaddition, which not only provides evidence for the existence of the minor zwitterionic resonance form in metallated azomethine ylide but also diversifies the existing chemistry of azomethine ylide-involved 1,3-dipolar cycloadditions with rare polarity inversion. Kinetic resolution of racemic alkylidene norcamphors Spiro architectures incorporating norbornane and pyrrolidine scaffolds Unique ligand-enabled umpolung-type 1,3-dipolar cycloaddition
Collapse
Affiliation(s)
- Chong Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yuhong Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wu-Wei Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lung Wa Chung
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|