1
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
2
|
Zakharov TN, Sakharov PA, Novikov MS, Khlebnikov AF, Rostovskii NV. Triethylamine-Promoted Oxidative Cyclodimerization of 2 H-Azirine-2-carboxylates to Pyrimidine-4,6-dicarboxylates: Experimental and DFT Study. Molecules 2023; 28:molecules28114315. [PMID: 37298789 DOI: 10.3390/molecules28114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
An unprecedented oxidative cyclodimerization reaction of 2H-azirine-2-carboxylates to pyrimidine-4,6-dicarboxylates under heating with triethylamine in air is described. In this reaction, one azirine molecule undergoes formal cleavage across the C-C bond and another across the C=N bond. According to the experimental study and DFT calculations, the key steps of the reaction mechanism include nucleophilic addition of N,N-diethylhydroxylamine to an azirine to form an (aminooxy)aziridine, generation of an azomethine ylide, and its 1,3-dipolar cycloaddition to the second azirine molecule. The crucial condition for the synthesis of pyrimidines is generation of N,N-diethylhydroxylamine in the reaction mixture in a very low concentration, which is ensured by the slow oxidation of triethylamine with air oxygen. Addition of a radical initiator accelerated the reaction and resulted in higher yields of the pyrimidines. Under these conditions, the scope of the pyrimidine formation was elucidated, and a series of pyrimidines was synthesized.
Collapse
Affiliation(s)
- Timofei N Zakharov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Pavel A Sakharov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Mikhail S Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Nikolai V Rostovskii
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Suzuki I, Takenaka Y, Morishita Y, Shibata I. One-step Preparation of N-Unprotected Aziridines from 2H-Azirines by Addition of Ketene Silyl Acetals Catalyzed by Lewis Acids. CHEM LETT 2022. [DOI: 10.1246/cl.210589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Itaru Suzuki
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuya Takenaka
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Morishita
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ikuya Shibata
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Rostovskii NV, Koronatov AN, Sakharov PA, Agafonova AV, Novikov MS, Khlebnikov AF, Rogacheva EV, Kraeva LA. Azirine-containing dipeptides and depsipeptides: synthesis, transformations and antibacterial activity. Org Biomol Chem 2020; 18:9448-9460. [PMID: 33170920 DOI: 10.1039/d0ob02023k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azirine-containing dipeptides and depsipeptides with a wide range of substituents have been synthesized in high yields via the Passerini and Ugi multicomponent reactions (MCRs) using 2H-azirine-2-carboxylic acids as the acid component. The obtained MCR adducts have been transformed to lactam-fused aziridines, as well as pyrrole, imidazole, aziridine, and other derivatives, containing the dipeptide or depsipeptide moiety. The azirine-containing depsipeptides exhibit antibacterial activity against the ESKAPE pathogens, especially Gram-positive bacterial strains (E. faecium - MIC 16 μg mL-1, S. aureus - MIC 9 μg mL-1).
Collapse
Affiliation(s)
- Nikolai V Rostovskii
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Alexander N Koronatov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Pavel A Sakharov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Anastasiya V Agafonova
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Mikhail S Novikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Alexander F Khlebnikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Elizaveta V Rogacheva
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia. and Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russia
| | - Liudmila A Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russia
| |
Collapse
|
5
|
Li D, Zang W, Bird MJ, Hyland CJT, Shi M. Gold-Catalyzed Conversion of Highly Strained Compounds. Chem Rev 2020; 121:8685-8755. [DOI: 10.1021/acs.chemrev.0c00624] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Deyao Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Wenqing Zang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Melissa J. Bird
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong,Wollongong New South Wales 2500, Australia
| | - Christopher J. T. Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong,Wollongong New South Wales 2500, Australia
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| |
Collapse
|
6
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
7
|
Galenko EE, Shakirova FM, Bodunov VA, Novikov MS, Khlebnikov AF. 1-(2H-Azirine-2-carbonyl)benzotriazoles: building blocks for the synthesis of pyrrole-containing heterocycles. Org Biomol Chem 2020; 18:2283-2296. [PMID: 32154550 DOI: 10.1039/d0ob00206b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A one-pot method was developed for the preparation of 2H-azirine-2-carbonylbenzotriazoles, formed by the reaction of benzotriazole with 2H-azirine-2-carbonyl chlorides, which were generated by the Fe(ii)-catalyzed isomerization of 5-chloroisoxazoles. The Co(ii)-catalyzed reaction of 2H-azirine-2-carbonylbenzotriazoles with 1,3-diketones provides 2-((benzotriazol-1-yl)carbonyl)pyrroles in moderate to good yields. Base-promoted annulations of 2-((benzotriazol-1-yl)carbonyl)pyrroles with aldehydes, ketones, isocyanates and isothiocyanates afford various substituted pyrrolo[1,2-c]oxazole and 1H-pyrrolo[1,2-c]imidazole derivatives in moderate to high yields. The 6-acyl group of these adducts can be removed by triflic acid, giving further new pyrrolo-fused O- and N-heterocycles, such as 6-unsubstituted pyrrolo[1,2-c]oxazol-1(3H)-one and 1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione, while the 6-acetyl substituent of 1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione, when treated with POCl3/pyridine, is transformed into the 6-ethynyl substituent.
Collapse
Affiliation(s)
- Ekaterina E Galenko
- St Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St Petersburg, 199034, Russia.
| | - Firuza M Shakirova
- St Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St Petersburg, 199034, Russia.
| | - Vladimir A Bodunov
- St Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St Petersburg, 199034, Russia.
| | - Mikhail S Novikov
- St Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St Petersburg, 199034, Russia.
| | - Alexander F Khlebnikov
- St Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St Petersburg, 199034, Russia.
| |
Collapse
|
8
|
Vinum MG, Voigt L, Bell C, Mihrin D, Larsen RW, Clark KM, Pedersen KS. Evidence for Non-Innocence of a β-Diketonate Ligand. Chemistry 2020; 26:2143-2147. [PMID: 31721307 DOI: 10.1002/chem.201904899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 11/07/2022]
Abstract
β-Diketonates, such as acetylacetonate, are amongst the most common bidentate ligands towards elements across the entire periodic table and are considered wholly redox-inactive in their complexes. Herein we show that complexation of 1,1,1,5,5,5-hexafluoroacetylacetonate (hfac- ) to CrII spontaneously affords CrIII and a reduced β-diketonate radical ligand scaffold, as evidenced by crystallographic analysis, magnetic measurements, optical spectroscopy, reactivity studies, and DFT calculations. The possibility of harnessing β-diketonates as electron reservoirs opens up possibilities for new metal-ligand concerted reactivity in the ubiquitous β-diketonate coordination chemistry.
Collapse
Affiliation(s)
- Morten Gotthold Vinum
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| | - Laura Voigt
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| | - Colby Bell
- Department of Chemistry, The University of Memphis, Memphis, TN, USA
| | - Dmytro Mihrin
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| | - René Wugt Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| | | | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Tan C, Liu Y, Liu X, Jia H, Xu K, Huang S, Wang J, Tan J. Stereoselective synthesis of trans-aziridines via intramolecular oxidative C(sp3)–H amination of β-amino ketones. Org Chem Front 2020. [DOI: 10.1039/c9qo01489f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An expedient strategy for the synthesis of trans-2,3-disubstituted via the intramolecular KI/TBHP mediated oxidative dehydrogenative C(sp3)–H amination reaction was presented.
Collapse
Affiliation(s)
- Chen Tan
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Xinyuan Liu
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huanxin Jia
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Kun Xu
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- China
| | - Sihan Huang
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jingwen Wang
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiajing Tan
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|