1
|
Yu J, Yang G, Gao ML, Wang H, Jiang HL. Chiral Ligand-Decorated Rhodium Nanoparticles Incorporated in Covalent Organic Framework for Asymmetric Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412643. [PMID: 39101718 DOI: 10.1002/anie.202412643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
While metal nanoparticles (NPs) have demonstrated their great potential in catalysis, introducing chiral microenvironment around metal NPs to achieve efficient conversion and high enantioselectivity remains a long-standing challenge. In this work, tiny Rh NPs, modified by chiral diene ligands (Lx) bearing diverse functional groups, are incorporated into a covalent organic framework (COF) for the asymmetric 1,4-addition reactions between arylboronic acids and nitroalkenes. Though Rh NPs hosted in the COF are inactive, decorating Rh NPs with Lx creates the active Rh-Lx interface and induces high activity. Moreover, chiral microenvironment modulation around Rh NPs by altering the groups on chiral diene ligands greatly optimizes the enantioselectivity (up to 95.6 % ee). Mechanistic investigations indicate that the formation of hydrogen-bonding interaction between Lx and nitroalkenes plays critical roles in the resulting enantioselectivity. This work highlights the significance of chiral microenvironment modulation around metal NPs by chiral ligand decoration for heterogeneous asymmetric catalysis.
Collapse
Affiliation(s)
- Jiangtao Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ge Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Ding S, Shi Y, Yang B, Hou M, He H, Gao S. Asymmetric Total Synthesis of Hasubanan Alkaloids: Periglaucines A-C, N,O-Dimethyloxostephine and Oxostephabenine. Angew Chem Int Ed Engl 2023; 62:e202214873. [PMID: 36357322 DOI: 10.1002/anie.202214873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 11/12/2022]
Abstract
We report herein the asymmetric total synthesis of periglaucines A-C, N,O-dimethyloxostephine and oxostephabenine. The key strategies used include: 1) a RhI -catalyzed regio- and diastereoselective Hayashi-Miyaura reaction to connect two necessary fragments; 2) an intramolecular photoenolization/Diels-Alder (PEDA) reaction to construct the highly functionalized tricyclic core skeleton bearing a quaternary center; 3) a bio-inspired intramolecular Michael addition and transannular acetalization to generate the aza[4.4.3]propellane and the tetrahydrofuran ring.
Collapse
Affiliation(s)
- Shaolei Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yingbo Shi
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu, 610068, China
| | - Baochao Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Min Hou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Haibing He
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China.,Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
3
|
Liang C, Wu F, Miao T, Zhang P, Zhang W, Wu F, Shi Q. Construction of a MOF-Supported Palladium Catalyst via Metal Metathesis. Chem Asian J 2023; 18:e202201096. [PMID: 36413147 DOI: 10.1002/asia.202201096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
A new MOF-supported heterogeneous palladium catalyst Pd/NBB-1 has been synthesized successfully through the effective metal metathesis between Pd(CF3 COO)2 and NBB-1. NBB-1 is a two-dimensional zinc metal-organic framework constructed from 2-aminoterephthalate (NH2 -H2 BDC) and 2,2'-bipyridine-5-carboxylate (HBPC) by solvothermal method. The replacement efficiency of Pd(II) to Zn(II) is up to 72% after only 24 hours, which is beneficial to the catalytic application. Pd/NBB-1 with a low loading of 2 mol% works efficiently in the 1,4-addition reaction of arylboronic acids with α,β-unsaturated ketones in air, and its catalytic activity keeps unchanged after 3 reaction cycles. This work provides a new strategy to effectively prepare supported noble metal/MOF catalysts, which would further increase the practical applications of metal-organic frameworks.
Collapse
Affiliation(s)
- Chenglong Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Fei Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Tingting Miao
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Peng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Weibing Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Fen Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| |
Collapse
|
4
|
Abstract
Asymmetric catalysis has emerged as a general and powerful approach for constructing chiral compounds in an enantioselective manner. Hence, developing novel chiral ligands and catalysts that can effectively induce asymmetry in reactions is crucial in modern chemical synthesis. Among such chiral ligands and catalysts, chiral dienes and their metal complexes have received increased attention, and a great progress has been made over the past two decades. This review provides comprehensive and critical information on the essential aspects of chiral diene ligands and their importance in asymmetric catalysis. The literature covered ranges from August 2003 (when the first effective chiral diene ligand for asymmetric catalysis was reported) to October 2021. This review is divided into two parts. In the first part, the chiral diene ligands are categorized according to their structures, and their preparation methods are summarized. In the second part, their applications in asymmetric transformations are presented according to the reaction types.
Collapse
Affiliation(s)
- Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
Wang J, Li J, Wang Y, He S, You H, Chen FE. Polymer-Supported Chiral Heterogeneous Copper Catalyst for Asymmetric Conjugate Addition of Ketones and Imines under Batch and Flow. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Junwen Wang
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Jun Li
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Yan Wang
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Sisi He
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Hengzhi You
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Fen-Er Chen
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Crawford ET, Smith KL, Johnson JS. Dearomative Synthesis of Chiral Dienes Enables Improved Late-Stage Ligand Diversification. Org Lett 2022; 24:1791-1795. [PMID: 35238202 DOI: 10.1021/acs.orglett.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient synthesis of chiral nonracemic diene ligands is facilitated by an enantioselective dearomative intermolecular arene cyclopropanation of anisole. The functionality of the resulting cycloheptatriene engenders distinct chemical environments in a downstream tricyclic bis(enol) triflate that permits selective late-stage functionalization. The synthesis of diverse C1- and pseudo-C2-symmetric dienes is therefore viable by iterative palladium-catalyzed cross-coupling reactions. The ligands provide moderate to high selectivities in known Rh(I)-mediated asymmetric transformations.
Collapse
Affiliation(s)
- Evan T Crawford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| | - Kendrick L Smith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| |
Collapse
|
7
|
Kuremoto T, Sadatsune R, Yasukawa T, Kobayashi S. Silica–Polystyrene Hybrid Core/Shell Microparticles of Rhodium–Chiral Diene Complexes as Catalysts for Asymmetric 1,4-Addition Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatsuya Kuremoto
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ren Sadatsune
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu̅ Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Cheng YY, Li WS, Wu HL. Application of Rh(I)/Bicyclo[2.2.1]heptadiene Catalysts to the Enantioselective Synthesis of Chiral Amines. CHEM REC 2021; 21:3954-3963. [PMID: 34596958 DOI: 10.1002/tcr.202100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022]
Abstract
The development of efficient synthetic methods for accessing enantioenriched α-chiral amines is of great importance in the disciplines of medicinal and synthetic organic chemistry. Enantioselective Rh-catalyzed 1,2-addition reactions to activated imine derivatives are regarded as useful protocols for forming α-chiral amines. This personal account outlines our efforts to develop chiral bicyclo[2.2.1]heptadiene ligands for Rh-catalyzed asymmetric additions of various organoboron reagents to a wide range of imine derivatives. Transformations of the thus-obtained adducts into known natural products or molecules of pharmaceutical importance serve to confirm their synthetic usefulness.
Collapse
Affiliation(s)
- Yu-Yi Cheng
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| |
Collapse
|
9
|
Deimling M, Kousik SR, Abitaev K, Frey W, Sottmann T, Koynov K, Laschat S, Atanasova P. Hierarchical Silica Inverse Opals as a Catalyst Support for Asymmetric Molecular Heterogeneous Catalysis with Chiral Rh‐diene Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202001997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Max Deimling
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Shravan R. Kousik
- Institute for Materials Science University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany
| | - Karina Abitaev
- Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Thomas Sottmann
- Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Kaloian Koynov
- Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Sabine Laschat
- Institute of Organic Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Petia Atanasova
- Institute for Materials Science University of Stuttgart Heisenbergstraße 3 70569 Stuttgart Germany
| |
Collapse
|
10
|
Kitanosono T, Hisada T, Yamashita Y, Kobayashi S. Hydrogen-Bonding-Assisted Cationic Aqua Palladium(II) Complex Enables Highly Efficient Asymmetric Reactions in Water. Angew Chem Int Ed Engl 2021; 60:3407-3411. [PMID: 33124701 DOI: 10.1002/anie.202009989] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Metal-bound water molecules have recently been recognized as a new facet of soft Lewis acid catalysis. Herein, a chiral palladium aqua complex was constructed that enables carbon-hydrogen bonds of indoles to be functionalized efficiently. We embraced a chiral 2,2'-bipyridine as both ligand and hydrogen-bond donor to configure a robust, yet highly Lewis acidic, chiral aqua complex in water. Whereas the enantioselectivity could not be controlled in organic solvents or under solvent-free conditions, the use of aqueous environments allowed the σ-indolylpalladium intermediates to react efficiently in a highly enantioselective manner. This work thus describes a potentially powerful new approach to the transformation of organometallic intermediates in a highly enantioselective manner under mild reaction conditions.
Collapse
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoya Hisada
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Kitanosono T, Hisada T, Yamashita Y, Kobayashi S. Hydrogen‐Bonding‐Assisted Cationic Aqua Palladium(II) Complex Enables Highly Efficient Asymmetric Reactions in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry School of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo Japan
| | - Tomoya Hisada
- Department of Chemistry School of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo Japan
| | - Yasuhiro Yamashita
- Department of Chemistry School of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo Japan
| | - Shū Kobayashi
- Department of Chemistry School of Science The University of Tokyo Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
12
|
Miller SJ, Ishitani H, Furiya Y, Kobayashi S. High-Throughput Synthesis of ( S)-α-Phellandrene through Three-Step Sequential Continuous-Flow Reactions. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Samuel J. Miller
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruro Ishitani
- GSC Social Cooperation Laboratory, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Furiya
- GSC Social Cooperation Laboratory, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu̅ Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- GSC Social Cooperation Laboratory, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Xue ZJ, Lu HY, Fu JG, Feng CG, Lin GQ. An azo-bridged ring system enabled by-standing immobilization of a chiral diene ligand. Org Chem Front 2021. [DOI: 10.1039/d1qo00852h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A family of 9-azabicyclo[3.3.1]nonadiene ligands were developed, and the nitrogen atom in the bridged ring enables a facile immobilization of diene ligands to silica.
Collapse
Affiliation(s)
- Ze-Jian Xue
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Han-Yu Lu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Guo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen-Guo Feng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
14
|
Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen FE. Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Bartáček J, Váňa J, Drabina P, Svoboda J, Kocúrik M, Sedlák M. Recoverable polystyrene-supported palladium catalyst for construction of all-carbon quaternary stereocenters via asymmetric 1,4-addition of arylboronic acids to cyclic enones. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Huang Y, Wang L, Li J, Qiu H, Leung PH. Enantioselective C,P-Palladacycle-Catalyzed Arylation of Imines. ACS OMEGA 2020; 5:15936-15941. [PMID: 32656414 PMCID: PMC7345393 DOI: 10.1021/acsomega.0c01124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Chiral diarylmethylamines are of great interest because of their prevalence in biological and pharmaceutical sciences. Herein, we report a C,P-palladacycle-catalyzed enantioselective synthesis of chiral diarylmethylamines via asymmetric arylation of N-protected imines with arylboronic acids. The C,P-palladacycle showed high reactivity (up to 99% yield) and enantioselectivity (up to 99% ee) toward this arylation, enabling the tolerance of a wide range of functionalities, providing a convenient and efficient access to enantiomerically enriched diarylmethylamines. The absolute configuration of the product was well rationalized by the proposed stereochemical pathway and the catalytical cycle.
Collapse
Affiliation(s)
- Yinhua Huang
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lijun Wang
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Junbao Li
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huayu Qiu
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Pak-Hing Leung
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
17
|
Lai J, Li W, Wei S, Li S. Natural carbolines inspired the discovery of chiral CarOx ligands for asymmetric synthesis and antifungal leads. Org Chem Front 2020. [DOI: 10.1039/d0qo00519c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural carboline-inspired novel chiral β-CarOx ligands were designed and synthesized for asymmetric synthesis and discovery of antifungal leads.
Collapse
Affiliation(s)
- Jixing Lai
- College of Plant Protection
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Wei Li
- College of Plant Protection
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Sanyue Wei
- College of Plant Protection
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Shengkun Li
- College of Plant Protection
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|