1
|
Liu L, Li J, Chen Y, Chen S, Xiao F, Deng GJ. Acid-Promoted Amination of Cyclohexenone for the Divergent Synthesis of p-Aminophenols and Tertiary Amines. J Org Chem 2024; 89:13826-13835. [PMID: 39295166 DOI: 10.1021/acs.joc.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A tunable method for the selective preparation of p-aminophenol and tertiary amines from a secondary amine and cyclohexenone has been described. Nonaromatic cyclohexenones were used as an aryl source. The desired tertiary amine products were generated when using I2 as the catalyst. This approach yields single-site-selective p-aminophenol without using I2, and the 18O labeling experiments demonstrated that hydroxyl oxygen originates from O2.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jun Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Behmagham F, Abdullah MN, Azimi SB, Ubaid M, Ali ATA, Adhab AH, Sami MH, Soleimani-Amiri S, Vessally E. Reductive coupling of nitro compounds with boronic acid derivatives: an overview. RSC Adv 2023; 13:33390-33402. [PMID: 37964904 PMCID: PMC10642445 DOI: 10.1039/d3ra05100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
The purpose of this review is to summarize the current literature on reductive C-N coupling of nitro compounds and boronic acids, with special emphasis on the mechanistic features of the reactions. The metal-catalyzed reactions are discussed first. This is followed by electro-synthesis and organophosphorus-catalyzed reactions. Finally, the available examples of catalyst-free reactions will be covered at the end of this review.
Collapse
Affiliation(s)
- Farnaz Behmagham
- Department of Chemistry, Miandoab Branch, Islamic Azad University Miandoab Iran
| | - Media Noori Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil Kurdistan Region Iraq
| | - Seyedeh Bahareh Azimi
- Assessment and Environment Risks Department, Research Center of Envirnment and Sustainable Development (RCESD) Tehran Iran
| | | | - Abbas Talib Abd Ali
- College of Health and Medical Technologies, National University of Science and Technology Dhi Qar Iraq
| | | | | | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| |
Collapse
|
3
|
Ganesh K, Sambasivam G, S K. A facile, one-pot reductive alkylation of aromatic and heteroaromatic amines in aqueous micellar media: a chemoenzymatic approach. Org Biomol Chem 2023; 21:4264-4268. [PMID: 37139595 DOI: 10.1039/d3ob00386h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A facile, green, selective and practical method for the catalytic N-alkylation of amines using molecular hydrogen as the reductant was developed. This procedure involves a lipase-mediated one-pot chemoenzymatic cascade wherein an amine undergoes a reductive amination with an aldehyde generated in situ. The imine formed thereby is reduced to give the corresponding amine. This process represents a convenient, environmentally benign and scalable one-pot process for the synthesis of N-alkyl amines. We report for the first time chemoenzymatic reductive alkylation in aqueous micellar media with an E-factor of 0.68.
Collapse
Affiliation(s)
- Krithika Ganesh
- Anthem Biosciences Pvt. Ltd., Bangalore 560099, India
- Vellore Institute of Technology, Vellore 632014, India
| | | | - Karthikeyan S
- Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
4
|
Kouhdareh J, Keypour H, Alavinia S, Maryamabadi A. Immobilization of Ag and Pd over a novel amide based covalent organic framework (COF-BASU2) as a heterogeneous reusable catalyst to reduce nitroarenes. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Li G, Kanda Y, Hong SY, Radosevich AT. Enabling Reductive C-N Cross-Coupling of Nitroalkanes and Boronic Acids by Steric Design of P(III)/P(V)═O Catalysts. J Am Chem Soc 2022; 144:8242-8248. [PMID: 35499970 PMCID: PMC9119554 DOI: 10.1021/jacs.2c01487] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An organophosphorus-catalyzed C-N bond-forming reductive coupling of nitroalkanes with arylboronic acids and esters is reported. The method shows excellent chemoselectivity for the nitro/boronic acid substrate pair, allowing the synthesis of N-(hetero)arylamines rich in functionalization. The identification of a sterically reduced phosphetane catalyst capable of productive coupling in the P(III)/P(V)═O redox manifold is the key enabling development. Combined experimental kinetics and computational mechanistic studies show that the sterically reduced catalyst affects post-rate-limiting steps to enable the C-N coupling event in preference to deleterious side-paths.
Collapse
Affiliation(s)
- Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuzuru Kanda
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seung Youn Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Manna K, Ganguly T, Baitalik S, Jana R. Visible-Light- and PPh 3-Mediated Direct C-N Coupling of Nitroarenes and Boronic Acids at Ambient Temperature. Org Lett 2021; 23:8634-8639. [PMID: 34643396 DOI: 10.1021/acs.orglett.1c03343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present here a metal-free, visible-light- and triphenylphosphine-mediated intermolecular, reductive amination between nitroarenes and boronic acids at ambient temperature without any photocatalyst. Mechanistically, a slow reduction of nitroarenes to a nitroso and, finally, a nitrene intermediate occurs that leads to the amination product with concomitant 1,2-aryl/-alkyl migration from a boronate complex. A wide range of nitroarenes underwent C-N coupling with aryl-/alkylboronic acids providing high yields.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Tanusree Ganguly
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
7
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
8
|
Qu Z, Chen X, Zhong S, Deng GJ, Huang H. NaI/PPh 3-Mediated Photochemical Reduction and Amination of Nitroarenes. Org Lett 2021; 23:5349-5353. [PMID: 34180677 DOI: 10.1021/acs.orglett.1c01654] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A mild transition-metal- and photosensitizer-free photoredox system based on the combination of NaI and PPh3 was found to enable highly selective reduction of nitroarenes. This protocol tolerates a broad range of reducible functional groups such as halogen (Cl, Br, and even I), aldehyde, ketone, carboxyl, and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type reductive amination when o-nitrobiarenes were used.
Collapse
Affiliation(s)
- Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
9
|
Ma SS, Sun R, Zhang ZH, Yu ZK, Xu BH. Ruthenium-catalysed chemoselective alkylation of nitroarenes with alkanols. Org Chem Front 2021. [DOI: 10.1039/d1qo01269j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alkylation of nitroarenes with akanols catalysed by the phosphinesulfonate ruthenium complex was reported. It displays different reactivity and chemoselectivity depending on the acid–base conditions, delivering diverse anilines from nitroarenes.
Collapse
Affiliation(s)
- Shuang-Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Heng Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Zheng-Kun Yu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Li G, Nykaza TV, Cooper JC, Ramirez A, Luzung MR, Radosevich AT. An Improved P III/P V═O-Catalyzed Reductive C-N Coupling of Nitroaromatics and Boronic Acids by Mechanistic Differentiation of Rate- and Product-Determining Steps. J Am Chem Soc 2020; 142:6786-6799. [PMID: 32178514 PMCID: PMC7146866 DOI: 10.1021/jacs.0c01666] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Experimental,
spectroscopic, and computational studies are reported
that provide an evidence-based mechanistic description of an intermolecular
reductive C–N coupling of nitroarenes and arylboronic acids
catalyzed by a redox-active main-group catalyst (1,2,2,3,4,4-hexamethylphosphetane P-oxide, i.e., 1·[O]). The central observations
include the following: (1) catalytic reduction of 1·[O]
to PIII phosphetane 1 is kinetically fast
under conditions of catalysis; (2) phosphetane 1 represents
the catalytic resting state as observed by 31P NMR spectroscopy;
(3) there are no long-lived nitroarene partial-reduction intermediates
observable by 15N NMR spectroscopy; (4) the reaction is
sensitive to solvent dielectric, performing best in moderately polar
solvents (viz. cyclopentylmethyl ether); and (5) the reaction is largely
insensitive with respect to common hydrosilane reductants. On the
basis of the foregoing studies, new modified catalytic conditions
are described that expand the reaction scope and provide for mild
temperatures (T ≥ 60 °C), low catalyst
loadings (≥2 mol%), and innocuous terminal reductants (polymethylhydrosiloxane).
DFT calculations define a two-stage deoxygenation sequence for the
reductive C–N coupling. The initial deoxygenation involves
a rate-determining step that consists of a (3+1) cheletropic addition
between the nitroarene substrate and phosphetane 1; energy
decomposition techniques highlight the biphilic character of the phosphetane
in this step. Although kinetically invisible, the second deoxygenation
stage is implicated as the critical C–N product-forming event,
in which a postulated oxazaphosphirane intermediate is diverted from
arylnitrene dissociation toward heterolytic ring opening with the
arylboronic acid; the resulting dipolar intermediate evolves by antiperiplanar
1,2-migration of the organoboron residue to nitrogen, resulting in
displacement of 1·[O] and formation of the target
C–N coupling product upon in situ hydrolysis.
The method thus described constitutes a mechanistically well-defined
and operationally robust main-group complement to the current workhorse
transition-metal-based methods for catalytic intermolecular C–N
coupling.
Collapse
Affiliation(s)
- Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Trevor V Nykaza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Julian C Cooper
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Antonio Ramirez
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael R Luzung
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Roscales S, Csáky AG. How to make C–N bonds using boronic acids and their derivatives without transition metals. Chem Soc Rev 2020; 49:5159-5177. [DOI: 10.1039/c9cs00735k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
No need for transition-metal catalysis in amination, amidation, nitration or nitrosation reactions with boron derivatives as reagents.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Aurelio G. Csáky
- Instituto Pluridisciplinar
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| |
Collapse
|