1
|
Coe-Sessions K, Davies AE, Dhokale B, Wenzel MJ, Mahmoudi Gahrouei M, Vlastos N, Klaassen J, Parkinson BA, Oliveira LDS, Hoberg JO. Functionalized Graphene via a One-Pot Reaction Enabling Exact Pore Sizes, Modifiable Pore Functionalization, and Precision Doping. J Am Chem Soc 2024; 146:33056-33063. [PMID: 39566039 PMCID: PMC11622224 DOI: 10.1021/jacs.4c10529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/22/2024]
Abstract
Functionalizing graphene with exact pore size, specific functional groups, and precision doping poses many significant challenges. Current methods lack precision and produce random pore sizes, sites of attachment, and amounts of dopant, leading to compromised structural integrity and affecting graphene's applications. In this work, we report a strategy for the synthesis of functionalized graphitic materials with modifiable nanometer-sized pores via a Pictet-Spengler polymerization reaction. This one-pot, four-step synthesis uses concepts based on covalent organic frameworks (COFs) synthesis to produce crystalline two-dimensional materials that were confirmed by PXRD, TEM measurements, and DFT studies. These new materials are structurally analogous to doped graphene and graphene oxide (GO) but, unlike GO, maintain their semiconductive properties when fully functionalized.
Collapse
Affiliation(s)
| | | | - Bhausaheb Dhokale
- Department of Chemistry, University
of Wyoming, Laramie, Wyoming 82071, United States
| | - Michael J. Wenzel
- Department of Chemistry, University
of Wyoming, Laramie, Wyoming 82071, United States
| | | | - Nikiphoros Vlastos
- Department of Chemistry, University
of Wyoming, Laramie, Wyoming 82071, United States
| | - Jordan Klaassen
- Department of Chemistry, University
of Wyoming, Laramie, Wyoming 82071, United States
| | - Bruce A. Parkinson
- Department of Chemistry, University
of Wyoming, Laramie, Wyoming 82071, United States
| | | | - John O. Hoberg
- Department of Chemistry, University
of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
2
|
Lorenzetto T, Berton G, Castellini F, Casson G, Scarso A, Fabris F. Symmetric Aromatic Amidoalkylations of Triphenylenes. Chemistry 2024; 30:e202402348. [PMID: 39073176 DOI: 10.1002/chem.202402348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Triphenylene derivatives are highly investigated for their electronic, supramolecular and photophysical properties, but the direct modification of the central aromatic core is particularly challenging especially in the internal positions 1, 4, 5, 8, 9, and 12. Herein we present an efficient alkylation method of 2,3,6,7,10,11-hexasubstituted triphenylene derivatives leading to tris-alkylated C3-symmetric derivatives in good yields using N-(hydroxymethyl)carboxamide or N-(alkoxylmethyl)carboxamide alkylating agents.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172, Venezia Mestre., ITALY
| | - Giacomo Berton
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172, Venezia Mestre., ITALY
| | - Francesco Castellini
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172, Venezia Mestre., ITALY
| | - Gabriele Casson
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172, Venezia Mestre., ITALY
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172, Venezia Mestre., ITALY
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172, Venezia Mestre., ITALY
| |
Collapse
|
3
|
Dhokale B, Coe-Sessions K, Wenzel MJ, Davies AE, Kelsey T, Brant JA, Oliveira LDS, Parkinson BA, Hoberg JO. Engineering Screw Dislocations in Covalent Organic Frameworks. J Am Chem Soc 2024. [PMID: 39302024 DOI: 10.1021/jacs.4c07859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We report the application of a Pictet-Spengler reaction to the synthesis of covalent organic frameworks (COFs) using functionalized terephthalaldehydes. The COFs produced show an increased propensity to generate screw dislocations and produce multilayered flakes when compared with other 2D-COFs. Using HRTEM, definitive evidence for screw dislocations was obtained and is presented. The effects on separations using these materials in membranes are also reported.
Collapse
Affiliation(s)
- Bhausaheb Dhokale
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kira Coe-Sessions
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Michael J Wenzel
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Alathea E Davies
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Taylor Kelsey
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jonathan A Brant
- Department of Civil Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | | | - Bruce A Parkinson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John O Hoberg
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
4
|
Wu ZH, Qu HT, Han BJ, Yang JX, Chang XW, Feng CT. Synthesis of pyrazino[1,2- b]indazoles via cascade cyclization of indazole aldehydes with propargylic amines. Org Biomol Chem 2024; 22:2226-2230. [PMID: 38363281 DOI: 10.1039/d4ob00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
An efficient intermolecular annulation of indazole aldehydes with propargylic amines has been developed for the synthesis of pyrazinoindazoles under catalyst- and additive-free conditions. This straightforward methodology was found to feature a wide substrate scope, high atom economy and environmental advantages. The bioactivity results of these new pyrazino[1,2-b]indazoles showed that some of them exhibited significant antifungal activity.
Collapse
Affiliation(s)
- Zeng-Hui Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| | - Heng-Tong Qu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| | - Ben-Jun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| | - Jia-Xin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| | - Xiang-Wei Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
| | - Cheng-Tao Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| |
Collapse
|
5
|
E V, Ghadei SK, Ruidas S, Bhakta V, Sakthivel R, Sankaran KJ, Bhaumik A, Dalapati S. A Metal-Free Triazacoronene-Based Bimodal VOC Sensor. ACS Sens 2024; 9:251-261. [PMID: 38207113 DOI: 10.1021/acssensors.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Developing suitable sensors for selective and sensitive detection of volatile organic compounds (VOCs) is crucial for monitoring indoor and outdoor air quality. VOCs are very harmful to our health upon inhalation or contact. Bimodal sensor materials with more than one transduction capability (optical and electrical) offer the ability to extract complementary information from the individual analyte, thus improving detection accuracy and performance. The privilege of manipulating the optoelectronic properties of the polycyclic aromatic hydrocarbon-based semiconducting materials offers rapid signal transduction in multimodal sensing applications. A thiophene-functionalized triazacoronene (TTAC) donor-acceptor-donor (D-A-D) type sensor is reported here for VOC sensing. The single-crystal X-ray structure analysis of the TTAC revealed that a distinctive supramolecular polymer architecture was formed because of cooperative π-π and intermolecular D-A interactions and exhibited rapid signal transduction upon exposure to specific VOCs. The TTAC-embedded green luminescent paper-based test strip exhibited an on-off fluorescence response upon nitrobenzene vapor exposure for 120 s. The selective and rapid response is due to the fast photoinduced electron transfer, as is evident from the time-resolved excited-state dynamics and density functional theory studies. The thick-film-based prototype chemiresistive sensor detects harmful VOCs in a custom-made gas sensing system including benzene, toluene, and nitrobenzene. The TTAC sensor rapidly responds (200 s) at relatively low temperatures (180 οC) compared to other reported metal-oxide-based sensors.
Collapse
Affiliation(s)
- Varadharajan E
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Surya Kanta Ghadei
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Viki Bhakta
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Ramasamy Sakthivel
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | | | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sasanka Dalapati
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| |
Collapse
|
6
|
Eichelmann R, Ballmann J, Gade LH. Tetraazacoronenes and Their Dimers, Trimers and Tetramers. Angew Chem Int Ed Engl 2023; 62:e202309198. [PMID: 37409960 DOI: 10.1002/anie.202309198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
Tetraazacoronenes were synthesized from bay-functionalized tetraazaperylenes by Zr-mediated cyclization and four-fold Suzuki-Miyaura cross coupling. In the Zr-mediated approach, an η4 -cyclobutadiene-zirconium(IV) complex was isolated as an intermediate to cyclobutene-annulated derivatives. Using bis(pinacolatoboryl)vinyltrimethylsilane as a C2 building block gave the tetraazacoronene target compound along with the condensed azacoronene dimer as well as higher oligomers. The series of extended azacoronenes show highly resolved UV/Vis absorption bands with increased extinction coefficients for the extended aromatic cores and fluorescence quantum yields of up to 80 % at 659 nm.
Collapse
Affiliation(s)
- Robert Eichelmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Lin LC, Suresh S, Lin KW, Kavala V, Yao CF. One-Pot Knoevenagel/Imination/6π-Azaelectrocyclization Sequence for the Synthesis of Disubstituted Nicotinonitriles. J Org Chem 2023. [PMID: 37437261 DOI: 10.1021/acs.joc.3c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
We report on a copper-catalyzed three-component reaction for the synthesis of disubstituted nicotinonitriles using 3-bromopropenals, benzoylacetonitriles, and ammonium acetate (NH4OAc). The Knoevenagel-type condensation of 3-bromopropenals with benzoylacetonitriles gives δ-bromo-2,4-dienones that contain strategically placed functional groups that react with the ammonia generated in situ to give the corresponding azatrienes. These azatrienes can then be transformed into trisubstituted pyridines under the reaction conditions via a reaction sequence involving 6π-azaelectrocyclization and aromatization.
Collapse
Affiliation(s)
- Li-Chun Lin
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| | - Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| | - Kun-Wu Lin
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, R.O.C
| |
Collapse
|
8
|
Rakumitsu K, Fujii M, Kusumoto S, Kikkawa S, Azumaya I, Yokoyama A. Synthesis, crystal structure, and properties of methyl-substituted coronene amide analogue. RSC Adv 2022; 12:26411-26417. [PMID: 36275098 PMCID: PMC9479769 DOI: 10.1039/d2ra04035b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
A coronene amide analogue was synthesized in six steps using an improved method at the final biarylation step. The key to the progress of palladium-mediated biarylation involved the introduction of three methyl groups to suppress the undesired reaction and the use of tri-tert-butylphosphine as the ligand for palladium. Single-crystal X-ray analysis revealed that the core unit of the coronene analogue has a non-planar structure.
Collapse
Affiliation(s)
- Kenta Rakumitsu
- Faculty of Science and Technology, Seikei University 3-3-1 Kichijoji-kitamachi, Musashino Tokyo 180-8633 Japan
| | - Miho Fujii
- Faculty of Science and Technology, Seikei University 3-3-1 Kichijoji-kitamachi, Musashino Tokyo 180-8633 Japan
| | - Sotaro Kusumoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Akihiro Yokoyama
- Faculty of Science and Technology, Seikei University 3-3-1 Kichijoji-kitamachi, Musashino Tokyo 180-8633 Japan
| |
Collapse
|
9
|
Zou N, Liu Z, Yan G, Wang Y, Liang C, Mo D. DBU‐Promoted 6π‐Azaelectrocyclization and Hydrogen‐Migration to Prepare 6‐Alkyl Pyridine
N
‐Oxides from
N
‐Vinyl‐
α
,
β
‐Unsaturated Nitrones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ning Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Zhang‐Wei Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Gong‐Gui Yan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Ying‐Chun Wang
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000, People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Dong‐Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| |
Collapse
|
10
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
11
|
Electrocyclizations of Conjugated Azapolyenes Produced in Reactions of Azaheterocycles with Metal Carbenes. ORGANICS 2021. [DOI: 10.3390/org2030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Conjugated azapolyenes (azabuta-1,3-dienes, aza-/diaza-/oxaza-/oxadiazahexa-1,3,5-trienes) are highly reactive in electrocyclization reactions, which makes them convenient precursors for the synthesis of a wide range of four-, five-, and six-membered nitrogen heterocycles that are of relevance for medicinal chemistry. Ring opening reactions of 2H-azirines and azoles containing an N–N or N–O bond, initiated by a transition metal carbene, have become increasingly important in recent years, since they easily allow the generation of azapolyenes with different numbers of double bonds and heteroatoms in various positions. This review summarizes the literature, published mainly in the last decade, on the synthetic and mechanistic aspects of electrocyclizations of azapolyenes generated by the carbene method.
Collapse
|
12
|
Sun Y, Yang T, Chen C, Yang B, Yang Y, Li J, Sun H, Wei J. 1,2,5,6,9-Pentaazacoronenes (PACs) and π-Extended PAC Derivatives: Synthesis, Crystal Structure, and Optical and Redox Properties. Org Lett 2021; 23:5616-5620. [PMID: 34142840 DOI: 10.1021/acs.orglett.1c01574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel class of 1,2,5,6,9-pentaazacoronene (PAC, 1) derivatives and π-extended PAC derivatives, chromeno[2,3,4-ij]pentaazacoronenes (CPACs, 2), has been successfully synthesized on the basis of intramolecular diazo-coupling reaction and Pictet-Spengler cyclization. Single-crystal analysis demonstrates that 1o (R1 = H) displays a herringbone packing motif while 1s (R1 = C3F7) packs into an S-shaped arrangement. Photophysical and electrochemical studies indicated that the new PAC system manifested significantly red-shifted absorption and emission capacity, larger Stokes shifts, and narrower HOMO-LUMO energy gaps.
Collapse
Affiliation(s)
- Yixun Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Tian Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Chong Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Bo Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yihui Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jing Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Junfa Wei
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
13
|
He H, Xu N, Zhang H, Chen B, Hu Z, Guo K, Chun J, Cao S, Zhu Y. Brønsted acid-promoted hydroamination of unsaturated hydrazones: access to biologically important 5-arylpyrazolines. RSC Adv 2021; 11:17340-17345. [PMID: 35479684 PMCID: PMC9033072 DOI: 10.1039/d1ra03043d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
A novel and efficient Brønsted acid-promoted hydroamination of hydrazone-tethered olefins has been developed. A variety of pyrazolines have been easily obtained in good to excellent yields with high chemo- and regioselectivity under simple and mild conditions. This method represents a straightforward, facile, and practical approach toward biologically important 5-arylpyrazolines, which are difficult to access by previously reported radical hydroamination of β,γ-unsaturated hydrazones. An efficient, chemo- and regioselective Brønsted acid-promoted hydroamination reaction of hydrazone-tethered olefins towards 5-arylpyrazolines was developed.![]()
Collapse
Affiliation(s)
- Han He
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Bin Chen
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Zhengnan Hu
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Jianlin Chun
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
| |
Collapse
|
14
|
Li S, Liu L, Wang R, Yang Y, Li J, Wei J. Palladium-Catalyzed Oxidative Annulation of Sulfoximines and Arynes by C–H Functionalization as an Approach to Dibenzothiazines. Org Lett 2020; 22:7470-7474. [DOI: 10.1021/acs.orglett.0c02615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shan Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Liansheng Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rong Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yihui Yang
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Junfa Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
15
|
He C, Han W, Cui B, Wan N, Chen Y. Efficient Assembly of Molecular Complexity Enabled by Palladium‐Catalyzed Heck Coupling/C(
sp
2
)−H Activation/ C(
sp
3
)−H Activation Cascade. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chen He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of PharmacyZunyi Medical University Zunyi 563006 People's Republic of China
| | - Wen‐Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of PharmacyZunyi Medical University Zunyi 563006 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical University Zunyi 563006 People's Republic of China
| | - Bao‐Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of PharmacyZunyi Medical University Zunyi 563006 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical University Zunyi 563006 People's Republic of China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of PharmacyZunyi Medical University Zunyi 563006 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical University Zunyi 563006 People's Republic of China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of PharmacyZunyi Medical University Zunyi 563006 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical University Zunyi 563006 People's Republic of China
| |
Collapse
|