1
|
Castro-Godoy WD, Heredia AA, Bouchet LM, Argüello JE. Synthesis of Selenium Derivatives using Organic Selenocyanates as Masked Selenols: Chemical Reduction with Rongalite as a Simpler Tool to give Nucleophilic Selenides. Chempluschem 2024; 89:e202400183. [PMID: 38648466 DOI: 10.1002/cplu.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The chemical reduction within a family of organic selenocyanates, as masked selenols, using reducing agents, such as Rongalite, sodium dithionite, and sodium thiosulfate is investigated. Using Rongalite, the corresponding diselenides were obtained quantitatively and selectively in very good to excellent yields (51-100 %) starting from alkyl, aryl, and benzyl selenocyanates. The scope of the reaction is unaffected by the electronic nature of the substituents. Furthermore, the reducing agent, Rongalite, is compatible with hydrolysable and reducing-sensitive functional groups. Additionally, a simple methodology employing the in-situ generated benzyl selenolate anion (PhCH2Se-) to promote aliphatic nucleophilic substitution, epoxide ring opening, and Michael addition reactions has been developed; thus, extending the structural diversity of the synthesized selenium derivatives.
Collapse
Affiliation(s)
- Willber D Castro-Godoy
- Dpto. de Química, Física y Matemática, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San, Salvador, 1101, El Salvador
| | - Adrián A Heredia
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Lydia M Bouchet
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Juan E Argüello
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
2
|
Li S, Cao Y, Jiang L, Liu J. Synthesis of Diaryl Tellurides with Sodium Aryltellurites under Mild Conditions. Chem Asian J 2024; 19:e202300993. [PMID: 38438327 DOI: 10.1002/asia.202300993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
A highly efficient new protocol has been developed for the formation of C-Te bonds, leading to both symmetrical and unsymmetrical diaryl tellurides. This protocol utilizes sodium aryltellurites (4), which can be easily prepared from low-cost aryltelluride trichlorides and NaOH. The synthesis involves the use of 4 and arylazo sulfones as starting materials in the presence of (MeO)2P(O)H. A variety of diaryl tellurides are obtained in moderate to good yields using this method. Importantly, this innovative protocol eliminates the need for traditional, highly toxic aryltellurolating reagents such as diaryl ditellurides and elemental tellurium. This study will bring new vitality to the synthesis of tellurides.
Collapse
Affiliation(s)
- Shan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
- Shazhou Professional Institute of Technology, Zhangjiagang, Jiangsu, 215600, China
| | - Yuan Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Lvqi Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| |
Collapse
|
3
|
Carradori S, Ammazzalorso A, Niccolai S, Tanini D, D’Agostino I, Melfi F, Capperucci A, Grande R, Sisto F. Nature-Inspired Compounds: Synthesis and Antibacterial Susceptibility Testing of Eugenol Derivatives against H. pylori Strains. Pharmaceuticals (Basel) 2023; 16:1317. [PMID: 37765124 PMCID: PMC10534785 DOI: 10.3390/ph16091317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The antimicrobial properties of one of the most important secondary metabolites, Eugenol (EU), inspired us to design and synthesize three different series of derivatives enhancing its parent compound's anti-Helicobacter pylori activity. Thus, we prepared semisynthetic derivatives through (A) diazo aryl functionalization, (B) derivatization of the hydroxy group of EU, and (C) elongation of the allyl radical by incorporating a chalcogen atom. The antibacterial evaluation was performed on the reference NCTC 11637 strain and on three drug-resistant clinical isolates and the minimal inhibitory and bactericidal concentrations (MICs and MBCs) highlight the role of chalcogens in enhancing the antimicrobial activity (less than 4 µg/mL for some compounds) of the EU scaffold (32-64 µg/mL).
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (F.M.); (R.G.)
| | - Alessandra Ammazzalorso
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (F.M.); (R.G.)
| | - Sofia Niccolai
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy; (S.N.); (D.T.); (A.C.)
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy; (S.N.); (D.T.); (A.C.)
| | - Ilaria D’Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Francesco Melfi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (F.M.); (R.G.)
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy; (S.N.); (D.T.); (A.C.)
| | - Rossella Grande
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (F.M.); (R.G.)
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy;
| |
Collapse
|
4
|
Carbonic Anhydrase inhibitors bearing organotelluride moieties as novel agents for antitumor therapy. Eur J Med Chem 2022; 244:114811. [DOI: 10.1016/j.ejmech.2022.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022]
|
5
|
Tanini D, Capperucci A, Locuoco M, Ferraroni M, Costantino G, Angeli A, Supuran CT. Benzoselenoates: A novel class of carbonic anhydrase inhibitors. Bioorg Chem 2022; 122:105751. [PMID: 35344894 DOI: 10.1016/j.bioorg.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
A series of benzoselenoates has been prepared and their inhibitory properties against the most relevant human Carbonic Anhydrases (CAs) isoforms, among which hCA I, II, IV, VII, IX, and XII were investigated. These inhibitors were designed considering the carboxylates and mono-/dithiocarbamates as lead and led to the observation that the COSe- is a new zinc-binding group (ZBG) for metalloenzymes possessing zinc ions at their active site. The substitution pattern on aromatic ring of the benzoselenoates is the crucial structural element influencing selectivity towards various isoforms. We elucidated the binding mode of benzoselenoates to hCA I and hCA II by using X-ray crystallography. The negatively charged selenium atom from the new ZBG was observed coordinated to the zinc ion from the CA active site at a distance of 2.30-2.40 Å from it. Overall, these data might be useful for the development of new inhibitors with higher selectivity and efficacy for various hCAs.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Maria Locuoco
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Gabriele Costantino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Andrea Angeli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Angeli A, Ferraroni M, Capperucci A, Tanini D, Costantino G, Supuran CT. Selenocarbamates as a novel prodrug-based approach towards Carbonic Anhydrase inhibition. ChemMedChem 2022; 17:e202200085. [PMID: 35238480 PMCID: PMC9310613 DOI: 10.1002/cmdc.202200085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/01/2022] [Indexed: 12/05/2022]
Abstract
A study on the activity of selenocarbamates as a novel chemotype acting as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. Undergoing CA‐mediated hydrolysis, selenocarbamates release selenolates behaving as zinc binding groups and effectively inhibiting CAs. A series of selenocarbamates characterised by high molecular diversity and complexity have been studied against different human CA isoforms such as hCA I, II, IX and XII. Selenocarbamates behave as masked selenols with potential biological applications as prodrugs for CAs inhibition‐based strategies. X‐ray studies provided insights into the binding mode of this novel class of CA inhibitors.
Collapse
Affiliation(s)
- Andrea Angeli
- University of Florence: Universita degli Studi di Firenze, NEUROFARBA, Sezione di Scienze Farmaceutiche, ITALY
| | - Marta Ferraroni
- University of Florence: Universita degli Studi di Firenze, Chemistry "Ugo Schiff", ITALY
| | - Antonella Capperucci
- University of Florence: Universita degli Studi di Firenze, Chemistry "Ugo Schiff", ITALY
| | - Damiano Tanini
- Università degli Studi di Firenze, Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia, 3-13, 50019, Firenze, ITALY
| | - Gabriele Costantino
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Claudiu T Supuran
- University of Florence: Universita degli Studi di Firenze, NEUROFARBA, Sezione di Scienze Farmaceutiche, ITALY
| |
Collapse
|
7
|
Paixão DB, Soares EGO, Salles HD, Silva CDG, Rampon DS, Schneider PH. Rongalite in PEG-400 as a general and reusable system for the synthesis of 2,5-disubstituted chalcogenophenes. Org Chem Front 2022. [DOI: 10.1039/d2qo01069k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we report the use of rongalite in PEG-400 as a general, efficient, and environmentally benign reductive system for the synthesis of a wide range of 2,5-disubstituted chalcogenophenes from elemental sulfur, selenium and tellurium.
Collapse
Affiliation(s)
- Douglas B. Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Eduardo G. O. Soares
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Helena D. Salles
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Caren D. G. Silva
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Daniel S. Rampon
- Laboratório de Polímeros e Catálise (LAPOCA), Departamento de Química, Universidade Federal do Paraná (UFPR), P.O. Box 19061, 81531-990, Curitiba, PR, Brazil
| | - Paulo H. Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Jagdev K, Tanini D, Lownes JW, Figliola C, Male L, Capperucci A, Grainger RS. Glutathione peroxidase mimics based on conformationally-restricted, peri-like, 4,5-disubstituted fluorene dichalcogenides. Org Biomol Chem 2021; 19:10565-10569. [PMID: 34846405 DOI: 10.1039/d1ob02153b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutathione peroxidase (GPx) regulates cellular peroxide levels through glutathione oxidation. GPx-mimics based on 4,5-disubstituted fluorene diselenides, their oxides, and ditellurides show catalytic activities consistent with conformational restriction about the dichalcogen bond.
Collapse
Affiliation(s)
- Kesar Jagdev
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Shiff", Via della Lastruccia 13, 1-50019 Sesto Fiorentino, Italy
| | - Jack W Lownes
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Carlotta Figliola
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Shiff", Via della Lastruccia 13, 1-50019 Sesto Fiorentino, Italy
| | - Richard S Grainger
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
9
|
Tanini D, Carradori S, Capperucci A, Lupori L, Zara S, Ferraroni M, Ghelardini C, Mannelli L, Micheli L, Lucarini E, Carta F, Angeli A, Supuran CT. Chalcogenides-incorporating carbonic anhydrase inhibitors concomitantly reverted oxaliplatin-induced neuropathy and enhanced antiproliferative action. Eur J Med Chem 2021; 225:113793. [PMID: 34507012 DOI: 10.1016/j.ejmech.2021.113793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Platinum-based chemotherapy is widely used for the treatment of different tumors but is associated with serious side effects, among which neuropathic pain. Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors have recently been validated as therapeutic agents in neuropathic pain and as antitumor agents. We report the synthesis of new organochalcogenides bearing the benzensulfonamide moiety acting as potent inhibitors of several human CA isoforms and, in particular, against hCA II and VII endowed with potent neuropathic pain attenuating effects. Moreover, in combination with cisplatin or doxorubicin, some of the new CA inhibitors enhanced the effects of the anticancer drugs capability in counteracting breast cancer MCF7 cell viability. The concomitant anti-neuropathic pain and antiproliferative effects of the new chalcogenide-based CA inhibitors represent an innovative approach for the counteraction and management of side effects associated with clinically platinum drugs as antitumor agents.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lucrezia Lupori
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Susi Zara
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Ldc Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Laura Micheli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Elena Lucarini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 707410, Iasi, Romania.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
10
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Capperucci A, Coronnello M, Salvini F, Tanini D, Dei S, Teodori E, Giovannelli L. Synthesis of functionalised organochalcogenides and in vitro evaluation of their antioxidant activity. Bioorg Chem 2021; 110:104812. [PMID: 33744808 DOI: 10.1016/j.bioorg.2021.104812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
Differently substituted β-hydroxy- and β-amino dialkyl and alkyl-aryl tellurides and selenides have been prepared through ring-opening reactions of epoxides and aziridines with selenium- or tellurium-centered nucleophiles. The antioxidant properties and the cytotoxicity of such compounds have been investigated on normal human dermal fibroblasts. Most of the studied compounds exhibited a low cytotoxicity and a number of them proved to be non-toxic, not showing any effect on cell viability even at the highest concentration used (100 μM). The obtained results showed a significant antioxidant potential of the selected organotellurium compounds, particularly evident under conditions of exogenously induced oxidative stress. The antioxidant activity of selenium-containing analogues of active tellurides has also been evaluated on cells, highlighting that the replacement of Se with Te brought about a significant increase in the peroxidase activity.
Collapse
Affiliation(s)
- Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (Florence), Italy
| | - Marcella Coronnello
- University of Florence, Department of Health Sciences - Section of Clinical Pharmacology and Oncology, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Francesca Salvini
- University of Florence, Department of Health Sciences - Section of Clinical Pharmacology and Oncology, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (Florence), Italy.
| | - Silvia Dei
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy.
| | - Elisabetta Teodori
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | - Lisa Giovannelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health - Section of Pharmacology, Viale Pieraccini 6, 50139 Firenze, Italy
| |
Collapse
|
12
|
Ali R. New Dimensions in Rongalite Chemistry: The Land of Opportunities in Organic Synthesis and Material Sciences. ChemistrySelect 2020. [DOI: 10.1002/slct.202002878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rashid Ali
- Department of Chemistry, Jamia Millia Islamia Jamia Nagar (Okhla) New Delhi 110025 India
| |
Collapse
|
13
|
Unexpected Ethyltellurenylation of Epoxides with Elemental Tellurium under Lithium Triethylborohydride Conditions. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The one-pot multistep ethyltellurenylation reaction of epoxides with elemental tellurium and lithium triethylborohydride is described. The reaction mechanism was experimentally investigated. Dilithium ditelluride and triethyl borane, formed from elemental tellurium and lithium triethylborohydride, were shown to be the key species involved in the reaction mechanism. Epoxides undergo ring-opening reaction with dilithium ditelluride to afford β-hydroxy ditellurides, which are sequentially converted into the corresponding β-hydroxy-alkyl ethyl tellurides by transmetalation with triethyl borane, reasonably proceeding through the SH2 mechanism.
Collapse
|