1
|
Malik N, De R, Pal SK, Ramasastry SSV. A one-pot telescopic synthesis of benzo[ b]carbazoles and exploration of their liquid crystalline properties. Chem Commun (Camb) 2024; 60:4797-4800. [PMID: 38602366 DOI: 10.1039/d4cc00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We describe a diversity-oriented one-pot telescopic synthesis of various benzo[b]carbazoles with the naphthannulation of indoles as the key step, enabled by an intramolecular furan-olefin Diels-Alder reaction. This strategy is general and efficient across a wide range of substrates. We applied this method to synthesize and characterize the first benzo[b]carbazole-based liquid crystalline materials, where the unique molecular design led to the formation of a rare nematic phase at room temperature.
Collapse
Affiliation(s)
- Nirmal Malik
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| |
Collapse
|
2
|
Shekhar C, Satyanarayana G. Acid-Promoted Domino Access to Substituted Benzo[ b]carbazoles. J Org Chem 2024; 89:3732-3746. [PMID: 38394776 DOI: 10.1021/acs.joc.3c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Herein, a straightforward Bro̷nsted acids-promoted domino pathway to build substituted benzo[b]carbazoles has been described from easily accessible ortho-formyl (or ortho-acyl) cinnamate esters and indoles. Noticeably, the protocol was amenable to protecting group-free indoles. Notably, this methodology is based on a single-pot regioselective construction of two new C-C bonds and aromatization sequences under mild and metal-free reaction conditions. The mechanistic studies suggested the initial formation of bis-indole substituted intermediate via a dual aromatic substitution with two indole molecules at the carbonyl carbon of ortho-formyl (or ortho-acyl) cinnamate ester followed by intramolecular cyclization and aromatization with exclusion of a second indole molecule. Besides, the efficacy of this approach was also illustrated by scale-up and derivatization reactions, including the photophysical properties study.
Collapse
Affiliation(s)
- Chander Shekhar
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502 284d, India
| | - Gedu Satyanarayana
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502 284d, India
| |
Collapse
|
3
|
Bao M, Xie X, Huang J, Doyle MP, Ren Z, Yue H, Xu X. Divergent Construction of N-Doped Polycyclic Aromatic Hydrocarbons with Indole as the Nitrogen Source Building Block. Chemistry 2023; 29:e202300140. [PMID: 36705339 DOI: 10.1002/chem.202300140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
An Ag/Au-catalyzed divergent cascade reaction of alkyne embedded diazoketones with indoles has been described. Preliminary mechanistic studies indicate that the reaction goes through a [4+2]-cycloaddition of an in situ formed isobenzopyrylium intermediate with indole, followed by a sequential retro-Michael addition/carbene N-H insertion process to give the benzo[i]phenanthridines products with gold catalysis; whereas a dearomatization/rearomatization sequence occurs favourably when the reaction is catalyzed by a silver catalyst, delivering benzo[b]carbazoles in generally high to excellent yields. Notably, this is a rare example of using indole as the dienophile for cycloaddition with the isobenzopyrylium species, providing a concise and practical approach for the selective construction of N-doped polycyclic aromatic hydrocarbons (PAHs) with structural diversity and broad functional-group compatibility.
Collapse
Affiliation(s)
- Ming Bao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Zhi Ren
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Haibo Yue
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Ramesh G, Srivardhan V, Balamurugan R. Ag(I)-catalyzed cyclization of o-alkynylacetophenones facilitated through acetal formation: synthesis of C3-naphthyl indole derivatives. Org Biomol Chem 2022; 20:9698-9702. [PMID: 36416470 DOI: 10.1039/d2ob01873j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A mild method for an efficient synthesis of C3-naphthyl indoles from o-alkynylacetophenones has been developed. This Ag-catalyzed transformation is assisted by the acetal formed under the reaction condition employing trimethyl orthoformate (TMOF). The role of acetal in promoting the reaction under ambient conditions has been established with control experiments. A range of C3-naphthyl indole derivatives have been synthesized in moderate to very good yields.
Collapse
Affiliation(s)
- Golla Ramesh
- School of Chemistry, University of Hyderabab, Hyderabad-500046, India.
| | | | | |
Collapse
|
5
|
Koshikawa T, Nogami J, Nagashima Y, Tanaka K. Catalyst-Controlled Inter- and Intramolecular Cascade [4 + 2] Annulations via Benzopyrylium Intermediates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takumi Koshikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
6
|
Wang X, Shi A, Huang XQ, Chen X, Li T, Qu L, Yu B. Visible-light-induced cyclization of cyclic N-sulfonyl ketimines to N-sulfonamide fused imidazolidines. Org Biomol Chem 2022; 20:3798-3802. [PMID: 35445233 DOI: 10.1039/d2ob00460g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced metal-free cascade cyclization of cyclic N-sulfonyl ketimines with N-arylglycines for the construction of N-sulfonamide-fused imidazolidines was developed. The procedure employed 3 mol% of eosin Y as the photocatalyst at room temperature under visible light irradiation, providing various N-sulfonamide-fused imidazolidines in good yields (32 examples, up to 86% yields).
Collapse
Affiliation(s)
- Xiaotong Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Anzai Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xian-Qiang Huang
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiaolan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Tiesheng Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Li H, Zhu Y, Jiang C, Wei J, Liu P, Sun P. HOAc catalyzed three-component reaction for the synthesis of 3,3'-(arylmethylene)bis(1 H-indoles). Org Biomol Chem 2022; 20:3365-3374. [PMID: 35355039 DOI: 10.1039/d2ob00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient HOAc catalyzed three-component reaction of 2-(arylethynyl)anilines with arylaldehydes has been achieved, which leads to the generation of 3,3'-(arylmethylene)bis(1H-indoles) with good to excellent yields and high regioselectivity under transition-metal-free conditions. Four new C-C and C-N bonds were effectively formed in a one-pot procedure. Subsequent research on the reaction mechanism indicated that the reaction likely involved the processes of intramolecular cyclization and cascade intermolecular dehydration condensation.
Collapse
Affiliation(s)
- Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Qin XY, Wang JY, Geng FZ, Hao WJ, Tu SJ, Jiang B. Engaging yne-allenones in tunable catalytic silane-mediated conjugate transfer reductions. Chem Commun (Camb) 2021; 57:5394-5397. [PMID: 33942828 DOI: 10.1039/d1cc01422f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New tunable catalytic [2+2] cycloaddition/silane-mediated conjugate transfer reductions of yne-allenones have been developed, by which substituent-diverse cyclobutarenes with generally good yields were selectively synthesized by adjusting Fe-H and Cu-H catalytic systems. Use of the Fe-H system triggers 1,6-conjugate reduction to dihydrocyclobuta[a]naphthalen-4-ols whereas the Cu-H complex enables 1,4-conjugate reduction to cyclobuta[a]naphthalen-4(2H)-ones.
Collapse
Affiliation(s)
- Xiao-Yan Qin
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Jia-Yin Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Fang-Zhou Geng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|