1
|
Ding W, Hu W, Chen X, Wang Y, Liu X, Liu W, Wu X. Direct C-H difluoroallylation of α,β-unsaturated amides and aryl amides by rhodium catalysis. Chem Commun (Camb) 2024; 60:13036-13039. [PMID: 39431900 DOI: 10.1039/d4cc03804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Herein, we report the first example of Rh-catalyzed C(sp2)-H difluoroallylation of α,β-unsaturated amides with 3-bromo-3,3-difluoropropene under mild conditions. The features of this protocol for difluoroallylation are unprecedented vinylic substrates, ethanol as a green solvent, good functional group and air compatibility, and scale-up synthesis with low catalyst loading.
Collapse
Affiliation(s)
- Wenqian Ding
- Guangzhou University of Chinese Medicine, Guangdong 510006, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Wanqi Hu
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xingyu Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yan Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Xueqing Liu
- Guangzhou University of Chinese Medicine, Guangdong 510006, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Weiqi Liu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaowei Wu
- Guangzhou University of Chinese Medicine, Guangdong 510006, China.
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
2
|
Zhang X, Huang X, Chen Y, Chen B, Ma Y. Synthesis of gem-Difluorinated 1,4-Dienes via Nickel-Catalyzed Three-Component Coupling of (Trifluoromethyl)alkenes, Alkynes, and Organoboronic Acids. Org Lett 2023; 25:1748-1753. [PMID: 36866931 DOI: 10.1021/acs.orglett.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Herein, a nickel-catalyzed defluorinative three-component coupling of trifluoromethyl alkenes, internal alkynes, and organoboronic acids is presented. The protocol provides a highly efficient and selective route for the synthesis of structurally diverse gem-difluorinated 1,4-dienes under mild conditions. Mechanistic studies suggest that C-F bond activation proceeds probably through the oxidative cyclization of trifluoromethyl alkenes with Ni(0) species, sequential addition to alkynes, and β-fluorine elimination.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xinmiao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
3
|
Li Y, Zhang W, Yang S, Wang X, Liu Y, Ji D, Chen Q. Nickel‐Catalyzed Unsymmetrical Bis‐Allylation of Alkynes. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ying Li
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei‐Song Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Sa‐Na Yang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiao‐Yu Wang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Li Y, Zhang WS, Yang SN, Wang XY, Liu Y, Ji DW, Chen QA. Nickel-Catalyzed Unsymmetrical Bis-Allylation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202300036. [PMID: 36826223 DOI: 10.1002/anie.202300036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
The catalytic bis-allylation of alkynes is an important but challenging protocol to construct all-carbon tetra-substituted alkenes. Particularly, the catalytic unsymmetrical bis-allylation of alkynes remains as an underexplored task to date. We herein report an unprecedented unsymmetrical bis-allylation by simultaneously utilizing electrophilic trifluoromethyl alkene and nucleophilic allylboronate as the allylic reagents. With the aid of robust Ni0 /NHC catalysis, valuable skipped trienes can be obtained in high regio- and stereo-selectivities under mild conditions. Mechanistic studies indicate that the reaction may proceed through a β-fluorine elimination of a nickelacycle followed by a transmetalation step with allylboronate. The present method exhibits a good tolerance of various functional groups. Besides, the skipped triene products can undergo an array of elaborate transformations, which highlights the potential applications of this strategy.
Collapse
Affiliation(s)
- Ying Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sa-Na Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
He X, Liu J, Chen G, Xiong B, Xiao X, Chen L, Zhang X, Dong L, Ma X, Lian Z. Nickel-Catalyzed Cross-Electrophile Coupling Reactions between Allylic Acetates and gem-Difluorovinyl Tosylate. Org Lett 2022; 24:3538-3543. [PMID: 35511450 DOI: 10.1021/acs.orglett.2c01245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A nickel-catalyzed cross-electrophile coupling of allylic acetates and gem-difluorovinyl tosylate is presented, which first achieves allylic gem-difluoroolefins via C(sp3)-C(sp2) cross-electrophile coupling. In addition, this protocol was performed under mild reaction conditions, affording a variety of allylic gem-difluorovinyl arenes in moderate to good yields. Moreover, both linear and branched allylic acetate could produce a linear cross-coupling product exclusively. Mechanistic studies reveal that the reaction involves two different Ni(0)/Ni(II) catalytic cycles.
Collapse
Affiliation(s)
- Xiaochun He
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jiangjun Liu
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Gang Chen
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Baojian Xiong
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xue Xiao
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Lei Chen
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xuemei Zhang
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Lin Dong
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xuelei Ma
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhong Lian
- West China School of Pharmacy and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
6
|
Chen XQ, Lu H, Chen CX, Zeng R, Wang DY, Shi CY, Zhang A. Palladium-Catalyzed gem-Difluoroallylation Reaction between Aryltributyltin and Bromodifluoromethylated Alkenes. J Org Chem 2022; 87:2935-2946. [PMID: 35075894 DOI: 10.1021/acs.joc.1c02800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A robust Stille gem-difluoroallylation of arylstannanes with 3-bromo-3,3-difluoropropenes has been established. The catalyst was found to exert critical effect on the reaction chemoselectivity. By using Pd(OH)2/C as the catalyst, a series of 3-(hetero)aryl/vinyl-3,3-difluoropropenes were obtained in high efficiency with α-substitution regioselectivity. The reaction has a broad substrate scope, and various substitution patterns were well tolerated in both substrates. Notably, the reaction can be easily extended to late-stage gem-difluoroallylation of many bioactive molecules with good chemoselectivity.
Collapse
Affiliation(s)
- Xiao-Qu Chen
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Heng Lu
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chuan-Xin Chen
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruoqing Zeng
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dong-Yu Wang
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chang-Yun Shi
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ao Zhang
- Pharm-X Center, Research Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Wang ZL, Zhang FL, Xu JL, Shan CC, Zhao M, Xu YH. Copper-Catalyzed Anti-Markovnikov Hydrosilylation of Terminal Alkynes. Org Lett 2020; 22:7735-7742. [DOI: 10.1021/acs.orglett.0c02952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Feng-Lian Zhang
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Lin Xu
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Cui-Cui Shan
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Meng Zhao
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yun-He Xu
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|