1
|
Yang J, Ansari M, Pantazis DA, Zheng CHM, McDonald R, Ferguson MJ, Rosenberg L. Co-Catalyzed P-H Activation and Related Cp*Co(III) Phosphine Complexes. Inorg Chem 2024; 63:22409-22421. [PMID: 39527692 DOI: 10.1021/acs.inorgchem.4c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study reports that the well-known Co(III) precursor Co(η5-Cp*)I2(CO) (1) is an effective precatalyst for dehydrocoupling reactions of phosphines. Reaction monitoring by NMR, complemented by ESI-MS and EPR, suggests that Co(III) complexes containing secondary and primary phosphine ligands play an important role in this catalysis but that redox chemistry is also facile for these complexes, resulting in paramagnetic species. Representative examples of the mono(phosphine) complexes Co(η5-Cp*)I2(PR2H) (2) and Co(η5-Cp*)I2(PRH2) (4) and bis(phosphine) complexes [Co(η5-Cp*)I(PR2H)2] I (3) have been prepared. The characterization of these complexes through structural, computational, spectroscopic, and electrochemical analysis is reported and serves as a foundation for considering their mechanistic significance in the observed catalytic dehydrocoupling chemistry.
Collapse
Affiliation(s)
- Jin Yang
- Department of Chemistry, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Mursaleem Ansari
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Cameron H M Zheng
- Department of Chemistry, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Robert McDonald
- X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Ferguson
- X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
2
|
Rina YA, Schmidt JAR. Alpha-metalated N, N-dimethylbenzylamine rare-earth metal complexes and their catalytic applications. Dalton Trans 2024. [PMID: 38757291 DOI: 10.1039/d4dt00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This perspective summarizes our group's extensive research in the realm of organometallic lanthanide complexes, while also placing the catalytic reactions supported by these species within the context of known lanthanide catalysis worldwide, with a specific focus on phosphorus-based catalytic reactions such as intermolecular hydrophosphination and hydrophosphinylation. α-Metalated N,N-dimethylbenzylamine ligands have been utilized to generate homoleptic lanthanide complexes, which have subsequently proven to be highly active lanthanum-based catalysts. The main goal of our research program has been to enhance the catalytic efficiency of lanthanum-based complexes, which began with initial successes in the stoichiometric synthesis of organometallic lanthanide complexes and utilization of these species in catalytic hydrophosphination reactions. Not only have these species supported traditional lanthanide catalysis, such as the hydrophosphination of heterocumulenes like carbodiimides, isocyanates, and isothiocyanates, but they have also been effective for a plethora of catalytic reactions tested thus far, including the hydrophosphinylation and hydrophosphorylation of nitriles, hydrophosphination and hydrophosphinylation of alkynes and alkenes, and the heterodehydrocoupling of silanes and amines. Each of these catalytic transformations is meritorious in its own right, offering new synthetic routes to generate organic scaffolds with enhanced functionality while concurrently minimizing both waste generation and energy consumption. Objectives: We aim for the research summary presented herein to inspire and encourage other researchers to investigate f-element based stoichiometric and catalytic reactions. Our efforts in this field began with the recognition that potassium salts of benzyldimethylamine preferred deprotonation at the α-position, rather than the ortho-position, and we wondered if this regiochemistry would be retained in the formation of lanthanide complexes. The pursuit of this simple idea led first to a series of structurally fascinating homoleptic organometallic lanthanide complexes with surprisingly good stability. Fundamental studies of the protonolysis chemistry of these complexes ultimately revealed highly versatile lanthanide-based precatalysts that have propelled a catalytic investigation spanning more than a decade. We anticipate that this summative perspective will animate the synthetic as well as biological communities to consider La(DMBA)3-based catalytic methods in the synthesis of functionalized organic scaffolds as an atom-economic, convenient, and efficient methodology. Ultimately, we envision our work making a positive impact on the advancement of novel chemical transformations and contributing to progress in various fields of science and technology.
Collapse
Affiliation(s)
- Yesmin Akter Rina
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, Ohio 43606-3390, USA.
| | - Joseph A R Schmidt
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, Ohio 43606-3390, USA.
| |
Collapse
|
3
|
Wani AA, Carballo JJG, Jayaprakash H, Wörle M, Widera A, Togni A, Grützmacher H. A Simple Manganese(I) Catalyst for the Efficient and Selective Hydrophosphination of Olefins with PH 3, Primary, and Secondary Phosphanes. Chemistry 2024; 30:e202303848. [PMID: 38312108 DOI: 10.1002/chem.202303848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/06/2024]
Abstract
A tridentate ligand L with a P,NH,N donor motif was synthesized in few steps from commercially available precursors. Upon reaction with [MnBr(CO)5], an octahedral 18-electron complex [Mn(CO)3(L)]Br (1) is obtained in which L adopts a facial arrangement. After deprotonation of the NH group in the cationic complex unit, a neutral Mn(I) amido complex [Mn(CO)2(L-H)] (2) is formed under loss of CO. Rearrangement of L-H leads to a trigonal bipyramidal structure in which the P and N donor centers are in trans position. Further deprotonation of 2 results in a dep-blue anionic complex fragment [Mn(CO)2(L-2H)]- (3). DFT calculations and a QTAIM analysis show that the amido complex 2 contains a Mn-N bond with partial double bond character and 3 an aromatic MnN2C2 ring. The anion [Mn(CO)2(L-2H)]- reacts with Ph2PH to give a phosphido complex, which serves as phosphide transfer reagent to activated olefins. But the catalytic activity is low. However, the neutral amido complex 2 is an excellent catalyst and with loadings as low as 0.04 mol %, turn over frequencies of >40'000 h-1 can be achieved. Furthermore, secondary and primary alkyl phosphines as well as PH3 can be added in a catalytic hydrophosphination reaction to a wide range of activated olefins such as α,β-unsaturated aldehydes, ketones, esters, and nitriles. But also, vinyl pyridine and some styrene derivatives are converted into the corresponding phosphanes.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Juan José Gamboa Carballo
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC), University of Havana, Ave. S., Allende 1110, 10600 Havana, Cuba
| | - Harikrishnan Jayaprakash
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Michael Wörle
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Anna Widera
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| |
Collapse
|
4
|
Gajecki L, Sawicka B, Berg DJ, Oliver AG. Synthesis and Magnetic Studies of Two Neutral, Bis-Ligand Fe(II) Complexes Containing Carbazole- Bis(tetrazole) Ligands. Inorg Chem 2023. [PMID: 37478316 DOI: 10.1021/acs.inorgchem.3c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Previously reported carbazole-bis(tetrazole) (CzTR) ligands (where R = iPr and CH2-2,4,6-C6H2Me3) were used to synthesize air-stable, six-coordinate, octahedral bis-ligand Fe(II) complexes (CzTR)2Fe. The synthesis and characterization of these complexes using 1H nuclear magnetic resonance (NMR), X-ray crystallography, Mössbauer spectroscopy, and density functional theory (DFT) calculations are reported. Analysis of the magnetic properties revealed that the isopropyl derivative displays thermally induced spin crossover (SCO) over a temperature range of 150-350 K. This transition appears as an abrupt two-step transition in the solid state but simplifies to a smooth one-step transition in solution. The two-step transition in the solid state has been postulated to be due to lattice and solvation effects. In contrast, the slightly bulkier substituted CH2-2,4,6-C6H2Me3 (CH2Mes) Fe complex displays dramatically different magnetic behavior with no SCO and magnetic data suggesting low-spin Fe(II) with a possible TIP contribution. DFT calculations support the postulate that the change in magnetic behavior is primarily due to the nature of the ligand substituents.
Collapse
Affiliation(s)
- Leah Gajecki
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Barbara Sawicka
- Department of Mechanical Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | - David J Berg
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Allen G Oliver
- Department of Chemistry & Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Dannenberg SG, Seth DM, Finfer EJ, Waterman R. Divergent Mechanistic Pathways for Copper(I) Hydrophosphination Catalysis: Understanding That Allows for Diastereoselective Hydrophosphination of a Tri-substituted Styrene. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Steven G. Dannenberg
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Dennis M. Seth
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Emma J. Finfer
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| | - Rory Waterman
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, United States
| |
Collapse
|
6
|
Stevens MP, Spray E, Vitorica-Yrezabal IJ, Singh K, Timmermann VM, Sotorrios L, Macgregor SA, Ortu F. Synthesis, characterisation and reactivity of group 2 complexes with a thiopyridyl scorpionate ligand. Dalton Trans 2022; 51:11922-11936. [PMID: 35876311 DOI: 10.1039/d2dt02012b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we report the reactivity of the proligand tris(2-pyridylthio)methane (HTptm) with various Alkaline Earth (AE) reagents: (1) dialkylmagnesium reagents and (2) AE bis-amides (AE = Mg-Ba). Heteroleptic complexes of general formulae [Mg(Tptm)(R)] (R = Me, nBu; Tptm = {C(S-C5H4N)3}-) and [AE(Tptm)(N'')] (AE = Mg-Ba; N'' = {N(SiMe3)2}-) were targeted from the reaction of HTptm with R2Mg or [AE(N'')2]2. Reaction of the proligand with dialkylmagnesium reagents led to formation of [{Mg(κ3C,N,N-C{Bu}{S-C5H4N}2)(μ-S-C5H4N)}2] (1) and [{Mg(κ3C,N,N-C{Me}{S-C5H4N}2)(μ-OSiMe3)}2] (2) respectively, as a result of a novel transfer of an alkyl group onto the methanide carbon with concomitant C-S bond cleavage. However, reactivity of bis-amide precursors for Mg and Ca did afford the target species [AE(Tptm)(N'')] (3-AE; AE = Mg-Ca), although these proved susceptible to ligand degradation processes. DFT calculations show that alkyl transfer in the putative [Mg(Tptm)(nBu)] (1m') system and amide transfer in 3-Ca is a facile process that induces C-S bond cleavage in the Tptm ligand. 3-Mg and 3-Ca were also tested as catalysts for the hydrophosphination of selected alkenes and alkynes, including the first example of mono-hydrophosphination of 4-ethynylpyridine which was achieved with high conversions and excellent regio- and stereochemical control.
Collapse
Affiliation(s)
- Matthew P Stevens
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| | - Emily Spray
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| | | | - Kuldip Singh
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| | - Vanessa M Timmermann
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| | - Lia Sotorrios
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Fabrizio Ortu
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| |
Collapse
|
7
|
Belli RG, Yang J, Bahena EN, McDonald R, Rosenberg L. Mechanism and Catalyst Design in Ru-Catalyzed Alkene Hydrophosphination. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roman G. Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Jin Yang
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Erick Nuñez Bahena
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Robert McDonald
- X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
8
|
Varga B, Szemesi P, Nagy P, Herbay R, Holczbauer T, Fogassy E, Keglevich G, Bagi P. Enantioseparation of P-Stereogenic Secondary Phosphine Oxides and Their Stereospecific Transformation to Various Tertiary Phosphine Oxides and a Thiophosphinate. J Org Chem 2021; 86:14493-14507. [PMID: 34633814 PMCID: PMC8576816 DOI: 10.1021/acs.joc.1c01364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Secondary phosphine
oxides incorporating various aryl and alkyl
groups were synthesized in racemic form, and these products formed
the library reported in this study. TADDOL derivatives were used to
obtain the optical resolution of these P-stereogenic
secondary phosphine oxides. The developed resolution method showed
a good scope under the optimized reaction conditions, as 9 out of
14 derivatives could be prepared with an enantiomeric excess (ee)
≥ 79% and 5 of these derivatives were practically enantiopure
>P(O)H compounds (ee ≥ 98%). The scalability of this resolution
method was also demonstrated. Noncovalent interactions responsible
for the formation of diasteromeric complexes were elucidated by single-crystal
XRD measurements. (S)-(2-Methylphenyl)phenylphosphine
oxide was transformed to a variety of P-stereogenic
tertiary phosphine oxides and a thiophosphinate in stereospecific
Michaelis–Becker, Hirao, or Pudovik reactions.
Collapse
Affiliation(s)
- Bence Varga
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter Szemesi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Gedeon Richter Plc., H-1475 Budapest, Hungary
| | - Petra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Réka Herbay
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Tamás Holczbauer
- Center for Structural Science, Chemical Crystallography Research Laboratory and Institute for Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1519 Budapest, Hungary
| | - Elemér Fogassy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter Bagi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
9
|
Varela-Izquierdo V, Geer AM, Navarro J, López JA, Ciriano MA, Tejel C. Rhodium Complexes in P-C Bond Formation: Key Role of a Hydrido Ligand. J Am Chem Soc 2021; 143:349-358. [PMID: 33356217 DOI: 10.1021/jacs.0c11010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Olefin hydrophosphanation is an attractive route for the atom-economical synthesis of functionalized phosphanes. This reaction involves the formation of P-C and H-C bonds. Thus, complexes that contain both hydrido and phosphanido functionalities are of great interest for the development of effective and fast catalysts. Herein, we showcase the excellent activity of one of them, [Rh(Tp)H(PMe3)(PPh2)] (1), in the hydrophosphanation of a wide range of olefins. In addition to the required nucleophilicity of the phosphanido moiety to accomplish the P-C bond formation, the key role of the hydride ligand in 1 has been disclosed by both experimental results and DFT calculations. An additional Rh-H···C stabilization in some intermediates or transition states favors the hydrogen transfer reaction from rhodium to carbon to form the H-C bond. Further support for our proposal arises from the poor activity exhibited by the related chloride complex [Rh(Tp)Cl(PMe3)(PPh2)] as well as from stoichiometric and kinetic studies.
Collapse
Affiliation(s)
- Víctor Varela-Izquierdo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ana M Geer
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Janeth Navarro
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|