1
|
Streich C, Stein F, Jakobi J, Ingendoh‐Tsakmakidis A, Heine N, Rehbock C, Winkel A, Grade S, Kühnel M, Migunov V, Kovács A, Knura T, Stiesch M, Sures B, Barcikowski S. The Origin of the Intracellular Silver in Bacteria: A Comprehensive Study using Targeting Gold-Silver Alloy Nanoparticles. Adv Healthc Mater 2023; 12:e2302084. [PMID: 37661312 PMCID: PMC11469222 DOI: 10.1002/adhm.202302084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The bactericidal effects of silver nanoparticles (Ag NPs) against infectious strains of multiresistant bacteria is a well-studied phenomenon, highly relevant for many researchers and clinicians battling bacterial infections. However, little is known about the uptake of the Ag NPs into the bacteria, the related uptake mechanisms, and how they are connected to antimicrobial activity. Even less information is available on AgAu alloy NPs uptake. In this work, the interactions between colloidal silver-gold alloy nanoparticles (AgAu NPs) and Staphylococcus aureus (S. aureus) using advanced electron microscopy methods are studied. The localization of the nanoparticles is monitored on the membrane and inside the bacterial cells and the elemental compositions of intra- and extracellular nanoparticle species. The findings reveal the formation of pure silver nanoparticles with diameters smaller than 10 nm inside the bacteria, even though those particles are not present in the original colloid. This finding is explained by a local RElease PEnetration Reduction (REPER) mechanism of silver cations emitted from the AgAu nanoparticles, emphasized by the localization of the AgAu nanoparticles on the bacterial membrane by aptamer targeting ligands. These findings can deepen the understanding of the antimicrobial effect of nanosilver, where the microbes are defusing the attacking silver ions via their reduction, and aid in the development of suitable therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Streich
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| | - Frederic Stein
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| | - Jurij Jakobi
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| | - Alexandra Ingendoh‐Tsakmakidis
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Nils Heine
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Christoph Rehbock
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Sebastian Grade
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Mark Kühnel
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Vadim Migunov
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with ElectronsForschungszentrum Jülich52425JülichGermany
| | - András Kovács
- Ernst Ruska‐Centre for Microscopy and Spectroscopy with ElectronsForschungszentrum Jülich52425JülichGermany
| | - Thomas Knura
- University Duisburg‐EssenAquatic EcologyUniversitaetsstr. 545141EssenGermany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolCarl‐Neuberg‐Straße 130625HannoverGermany
| | - Bernd Sures
- University Duisburg‐EssenAquatic EcologyUniversitaetsstr. 545141EssenGermany
| | - Stephan Barcikowski
- University Duisburg‐EssenTechnical Chemistry I, Universitaetsstr. 745141EssenGermany
| |
Collapse
|
2
|
Chen L, Klemeyer L, Ruan M, Liu X, Werner S, Xu W, Koeppen A, Bücker R, Gonzalez MG, Koziej D, Parak WJ, Chakraborty I. Structural Analysis and Intrinsic Enzyme Mimicking Activities of Ligand-Free PtAg Nanoalloys. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206772. [PMID: 36755199 DOI: 10.1002/smll.202206772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Indexed: 05/11/2023]
Abstract
Nanozymes are nanomaterials with biocatalytic properties under physiological conditions and are one class of artificial enzymes to overcome the high cost and low stability of natural enzymes. However, surface ligands on nanomaterials will decrease the catalytic activity of the nanozymes by blocking the active sites. To address this limitation, ligand-free PtAg nanoclusters (NCs) are synthesized and applied as nanozymes for various enzyme-mimicking reactions. By taking advantage of the mutual interaction of zeolitic imidazolate frameworks (ZIF-8) and Pt precursors, a good dispersion of PtAg bimetal NCs with a diameter of 1.78 ± 0.1 nm is achieved with ZIF-8 as a template. The incorporation of PtAgNCs in the voids of ZIF-8 is confirmed with structural analysis using the atomic pair-distribution function and powder X-ray diffraction. Importantly, the PtAgNCs present good catalytic activity for various enzyme-mimicking reactions, including peroxidase-/catalase- and oxidase-like reactions. Further, this work compares the catalytic activity between PtAg NCs and PtAg nanoparticles with different compositions and finds that these two nanozymes present a converse dependency of Ag-loading on their activity. This study contributes to the field of nanozymes and presents a potential option to prepare ligand-free bimetal biocatalysts with sizes in the nanocluster regime.
Collapse
Affiliation(s)
- Lizhen Chen
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Lars Klemeyer
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Mingbo Ruan
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xin Liu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Stefan Werner
- Fachbereich Chemie, Universität Hamburg, 20146, Hamburg, Germany
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Andrea Koeppen
- Fachbereich Chemie, Universität Hamburg, 20146, Hamburg, Germany
| | - Robert Bücker
- Centre for Structural Systems Biology (CSSB), Department of Chemistry, University of Hamburg, 22761, Hamburg, Germany
- Rigaku Europe SE, 63263, Neu-Isenburg, Germany
| | | | - Dorota Koziej
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761, Hamburg, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
| | - Indranath Chakraborty
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761, Hamburg, Germany
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
3
|
Stein F, Kohsakowski S, Martinez-Hincapie R, Reichenberger S, Rehbock C, Colic V, Guay D, Barcikowski S. Disproportional surface segregation in ligand-free gold-silver alloy solid solution nanoparticles, and its implication for catalysis and biomedicine. Faraday Discuss 2023; 242:301-325. [PMID: 36222171 DOI: 10.1039/d2fd00092j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Catalytic activity and toxicity of mixed-metal nanoparticles have been shown to correlate and are known to be dependent on surface composition. The surface chemistry of the fully inorganic, ligand-free silver-gold alloy nanoparticle molar fraction series, is highly interesting for applications in heterogeneous catalysis, which is determined by active surface sites which are also relevant for understanding their dissolution behavior in biomedically-relevant ion-release scenarios. However, such information has never been systematically obtained for colloidal nanoparticles without organic surface ligands and has to date, not been analyzed in a surface-normalized manner to exclude density effects. For this, we used detailed electrochemical measurements based on cyclic voltammetry to systematically analyze the redox chemistry of particle-surface-normalized gold-silver alloy nanoparticles with varying gold molar fractions. The study addressed a broad range of gold molar fractions (Ag90Au10, Ag80Au20, Ag70Au30, Ag50Au50, Ag40Au60, and Ag20Au80) as well as monometallic Ag and Au nanoparticle controls. Oxygen reduction reaction (ORR) measurements in O2 saturated 0.1 M KOH revealed a linear reduction of the overpotential with increasing gold content on the surface, probably attributed to the higher ORR activity of gold over silver, verified by monometallic Ag and Au controls. These findings were complemented by detailed XPS studies revealing an accumulation of the minor constituent of the alloy on the surface, e.g., silver surface enrichment in gold-rich particles. Furthermore, highly oxidized Ag surface site enrichment was detected after the ORR reaction, most pronounced in gold-rich alloys. Further, detailed CV studies at acidic pH, analyzing the position, onset potential, and peak integrals of silver oxidation and silver reduction peaks revealed particularly low reactivity and high chemical stability of the equimolar Au50Ag50 composition, a phenomenon attributed to the outstanding thermodynamic, entropically driven, stabilization arising at this composition.
Collapse
Affiliation(s)
- Frederic Stein
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | | | | | - Sven Reichenberger
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | - Christoph Rehbock
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | - Viktor Colic
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Guay
- Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, J3X 1P7, Canada
| | - Stephan Barcikowski
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| |
Collapse
|
4
|
Xu H, Li X, Hu W, Yu Z, Zhou H, Zhu Y, Lu L, Si C. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200352. [PMID: 35575041 DOI: 10.1002/cssc.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
5-hydroxymethylfurfural (HMF) is considered to be one of the most pivotal multifunctional biomass platform chemicals. This Review discusses recent advances in catalytic oxidation of HMF towards high-value products. The reaction mechanism of different noble metals and the path of HMF oxidation to high-value products have been deeply investigated in the noble metal catalytic system. The reaction mechanisms of different noble metals and HMF conversion paths were compared in detail. Moreover, the factors affecting the performance of different noble metal catalysts were summarized. Finally, effective strategies were put forward to improve the catalytic performance of noble metal catalysts. The purpose is to provide a valuable reference for the academic research on the preparation of oxidation products from biomass-based HMF and the industrial application of noble metal catalysts.
Collapse
Affiliation(s)
- Haocheng Xu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenxuan Hu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhihao Yu
- Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Huanran Zhou
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yameng Zhu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Lefu Lu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
5
|
Neukum D, Baumgarten L, Wüst D, Sarma BB, Saraçi E, Kruse A, Grunwaldt J. Challenges of Green Production of 2,5-Furandicarboxylic Acid from Bio-Derived 5-Hydroxymethylfurfural: Overcoming Deactivation by Concomitant Amino Acids. CHEMSUSCHEM 2022; 15:e202200418. [PMID: 35439346 PMCID: PMC9400955 DOI: 10.1002/cssc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is highly attractive as FDCA is considered as substitute for the petrochemically derived terephthalic acid. There are only few reports on the direct use of unrefined HMF solutions from biomass resources and the influence of remaining constituents on the catalytic processes. In this work, the oxidation of HMF in a solution as obtained from hydrolysis and dehydration of saccharides in chicory roots was investigated without intermediate purification steps. The amount of base added to the solution was critical to increase the FDCA yield. Catalyst deactivation occurred and was attributed to poisoning by amino acids from the bio-source. A strong influence of amino acids on the catalytic activity was found for all supported Au, Pt, Pd, and Ru catalysts. A supported AuPd(2 : 1)/C alloy catalyst exhibited both superior catalytic activity and higher stability against deactivation by the critical amino acids.
Collapse
Affiliation(s)
- Dominik Neukum
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Lorena Baumgarten
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Dominik Wüst
- Institute of Agricultural EngineeringUniversity of HohenheimGarbenstraße 970593StuttgartGermany
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Erisa Saraçi
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstraße 2076131KarlsruheGermany
| | - Andrea Kruse
- Institute of Agricultural EngineeringUniversity of HohenheimGarbenstraße 970593StuttgartGermany
| | - Jan‐Dierk Grunwaldt
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstraße 2076131KarlsruheGermany
| |
Collapse
|
6
|
Xie T, Yue S, Su T, Song M, Xu W, Xiao Y, Yang Z, Len C, Zhao D. High selective oxidation of 5-hydroxymethyl furfural to 5-hydroxymethyl-2-furan carboxylic acid using Ag-TiO2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Yao Y, Zhao K, Zhuang Y, Chen X, Lu Y, Liu Y. One-Pot Synthesis of 2,5-Furandicarboxylic Acid from 2-Furoic Acid by a Pd-catalyzed Bromination-Hydroxycarbonylation Tandem Reaction in Acetate Buffer. ChemistryOpen 2022; 11:e202100301. [PMID: 35363428 PMCID: PMC8973260 DOI: 10.1002/open.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Indexed: 11/11/2022] Open
Abstract
The one-pot synthesis of 2,5-furandicarboxylic acid from 2-furoic acid with a yield of 57 % was achieved for the first time using a Pd-catalyzed bromination-hydroxycarbonylation tandem reaction in HOAc-NaOAc buffer. This synthetic protocol shows major improvements compared to previously reported methods, such as using biomass-based 2-furoic acid as low-cost raw material, one-pot synthesis without isolation of intermediate products, and no need for an acidification procedure. Experiments indicate that the involved Xantphos-modified Pd-catalyst and the buffer solution play significant promoting roles for each individual reaction whereas Br2 (as the brominating reagent) had a negative effect on the second hydroxycarbonylation step, while CO was deleterious for the first bromination step. Hence, in this practical one-pot synthesis, Br2 should be consumed in the first bromination step as fully as possible, and CO is introduced after the first bromination step has been completed.
Collapse
Affiliation(s)
- Yin‐Qing Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiChina
| | - Kai‐Chun Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiChina
| | - Yi‐Ying Zhuang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiChina
| | - Xiao‐Chao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiChina
| | - Yong Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiChina
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiChina
| |
Collapse
|
8
|
Biradar Tamboli AT, Kirdant SP, Jadhav VH. Metal-free approach towards efficient synthesis of FDCA using a p-toluene sulfonic acid ( p-TSA)-derived heterogeneous solid acid catalyst and oxone over two steps from HMF, fructose and glucose. NEW J CHEM 2022. [DOI: 10.1039/d2nj01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a metal-free approach towards synthesis of 2,5-furandicarboxylic acid (FDCA) from HMF, fructose and glucose is reported over two steps using p-TSA–POM solid acid catalyst in the first step and oxone as an oxidant in the second step.
Collapse
Affiliation(s)
- Asma T. Biradar Tamboli
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swapnali P. Kirdant
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vrushali H. Jadhav
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Fu M, Yang W, Yang C, Zhang Y, Shen C. Mechanistic insights into CoOx–Ag/CeO2 catalysts for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01599k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CoOx–Ag/CeO2 catalysts achieve satisfactory FDCA yield from HMF, and a fundamental understanding about the reaction mechanism is provided.
Collapse
Affiliation(s)
- Mengchen Fu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Weiyao Yang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Chenyu Yang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Yiwen Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
| | - Chun Shen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P.R. China
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
10
|
Stein F, Schielke A, Barcikowski S, Rehbock C. Influence of Gold/Silver Ratio in Ablative Nanoparticles on Their Interaction with Aptamers and Functionality of the Obtained Conjugates. Bioconjug Chem 2021; 32:2439-2446. [PMID: 34730343 DOI: 10.1021/acs.bioconjchem.1c00468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nano-bio-conjugates, featuring noble metal gold-silver alloy nanoparticles, represent a versatile tool in diagnostics and therapeutics due to their plasmonic and antimicrobial properties tunable by the particle's gold molar fraction. However, little is known about how the binding of thiolated biomolecules to noble metal nanoparticles is influenced by the fraction of gold and silver atoms on the nanoparticle's surface and to which extend this would affect the functionality of the conjugated biomolecules. In this work, we generated gold-silver alloy nanoparticles with average diameters of 7-8 nm using the modern, surfactant-free laser ablation in liquids (LAL) synthesis approach. We conjugated them with thiolated miniStrep aptamer ligands at well-controlled aptamer-to-nanoparticle surface area ratios with maxima between 12 and 27 pmol aptamer/cm2 particle surface area. The results revealed a clear correlation between surface coverage and the nanoparticles' nominal gold/silver ratio, with maximum coverage reached for gold-rich alloys and a pronounced maximum for silver-rich alloys. However, the conjugates' functionality, evaluated by binding of streptavidin, was surprisingly robust and hardly affected by the nominal composition. However, 1.5 times higher surface coverage was needed to obtain maximum functionality in the silver-rich conjugates. Based on these results, it may be concluded that the nominal composition of gold-silver alloy nano-bioconjugates is freely tunable without a pronounced impact on the attached ligands' functionality, a finding highly relevant for the flexible design of nano-bio-conjugates for future biomedical applications. This study's results may facilitate the design of alloy nano-bio-conjugates for future applications in therapeutics and diagnostics.
Collapse
Affiliation(s)
- Frederic Stein
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Andreas Schielke
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| |
Collapse
|
11
|
Al-Zubeidi A, Stein F, Flatebo C, Rehbock C, Hosseini Jebeli SA, Landes CF, Barcikowski S, Link S. Single-Particle Hyperspectral Imaging Reveals Kinetics of Silver Ion Leaching from Alloy Nanoparticles. ACS NANO 2021; 15:8363-8375. [PMID: 33886276 DOI: 10.1021/acsnano.0c10150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gold-silver alloy nanoparticles are interesting for multiple applications, including heterogeneous catalysis, optical sensing, and antimicrobial properties. The inert element gold acts as a stabilizer for silver to prevent particle corrosion, or conversely, to control the release kinetics of antimicrobial silver ions for long-term efficiency at minimum cytotoxicity. However, little is known about the kinetics of silver ion leaching from bimetallic nanoparticles and how it is correlated with silver content, especially not on a single-particle level. To characterize the kinetics of silver ion release from gold-silver alloy nanoparticles, we employed a combination of electron microscopy and single-particle hyperspectral imaging with an acquisition speed fast enough to capture the irreversible silver ion leaching. Single-particle leaching profiles revealed a reduction in silver ion leaching rate due to the alloying with gold as well as two leaching stages, with a large heterogeneity in rate constants. We modeled the initial leaching stage as a shrinking-particle with a rate constant that exponentially depends on the silver content. The second, slower leaching stage is controlled by the electrochemical oxidation potential of the alloy being steadily increased by the change in relative gold content and diffusion of silver atoms through the lattice. Interestingly, individual nanoparticles with similar sizes and compositions exhibited completely different silver ion leaching yields. Most nanoparticles released silver completely, but 25% of them appeared to arrest leaching. Additionally, nanoparticles became slightly porous. Alloy nanoparticles, produced by scalable laser ablation in liquid, together with kinetic studies of silver ion leaching, provide an approach to design the durability or bioactivity of alloy nanoparticles.
Collapse
Affiliation(s)
- Alexander Al-Zubeidi
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Frederic Stein
- Technical Chemistry I and Center for Nanointegration, Duisburg-Essen, University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Charlotte Flatebo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Program, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration, Duisburg-Essen, University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Seyyed Ali Hosseini Jebeli
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration, Duisburg-Essen, University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Nguyen CM, Frias Batista LM, John MG, Rodrigues CJ, Tibbetts KM. Mechanism of Gold-Silver Alloy Nanoparticle Formation by Laser Coreduction of Gold and Silver Ions in Solution. J Phys Chem B 2021; 125:907-917. [PMID: 33439650 DOI: 10.1021/acs.jpcb.0c10096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical reduction of aqueous Ag+ and [AuCl4]- into alloy Au-Ag nanoparticles (Au-Ag NPs) with intense laser pulses is a green synthesis approach that requires no toxic chemical reducing agents or stabilizers; however size control without capping agents still remains a challenge. Hydrated electrons produced in the laser plasma can reduce both [AuCl4]- and Ag+ to form NPs, but hydroxyl radicals (OH·) in the plasma inhibit Ag NP formation by promoting the back-oxidation of Ag0 into Ag+. In this work, femtosecond laser reduction is used to synthesize Au-Ag NPs with controlled compositions by adding the OH· scavenger isopropyl alcohol (IPA) to precursor solutions containing KAuCl4 and AgClO4. With sufficient IPA concentration, varying the precursor ratio enabled control over the Au-Ag NP composition and produced alloy NPs with average sizes less than 10 nm and homogeneous molar compositions of Au and Ag. By investigating the kinetics of Ag+ and [AuCl4]- coreduction, we find that the reduction of [AuCl4]- into Au-Ag NPs occurs before most of the Ag+ is incorporated, giving us insight into the mechanism of Au-Ag NP formation.
Collapse
Affiliation(s)
- Christopher M Nguyen
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Laysa M Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mallory G John
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Collin J Rodrigues
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|