1
|
Xu SS, Li ZY, Liu MY, Sha F, Wu XY. Asymmetric Vinylogous Michael/Oxa-Michael Tandem Reaction between β,γ-Unsaturated Amides and Isatin-Derived β,γ-Unsaturated α-Ketoesters. J Org Chem 2024; 89:17425-17436. [PMID: 39545709 DOI: 10.1021/acs.joc.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
An organocatalytic asymmetric vinylogous Michael/oxa-Michael tandem reaction between β,γ-unsaturated pyrazoleamides and isatin-derived β,γ-unsaturated ketoesters has been developed with excellent regio-, diastereo-, and enantioselectivities. The methodology provides an effective approach to construct enantiomerically pure 3,4'-pyranyl spirooxindole derivatives containing three contiguous chiral centers. Moreover, the transformations of the chiral products, including the removal and reduction of the pyrazole group, have been investigated.
Collapse
Affiliation(s)
- Shan-Shan Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zi-Yu Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Meng-Yu Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Zhu RR, Hou XQ, Du DM. Synthesis of Benzofuran Derivatives via a DMAP-Mediated Tandem Cyclization Reaction Involving ortho-Hydroxy α-Aminosulfones. Molecules 2024; 29:3725. [PMID: 39202804 PMCID: PMC11357171 DOI: 10.3390/molecules29163725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
An efficient cascade cyclization strategy was developed to synthesize aminobenzofuran spiroindanone and spirobarbituric acid derivatives utilizing 2-bromo-1,3-indandione, 5-bromo-1,3-dimethylbarbituric acid, and ortho-hydroxy α-aminosulfones as substrates. Under the optimized reaction conditions, the corresponding products were obtained with high efficiency, exceeding 95% and 85% yields for the respective derivatives. This protocol demonstrates exceptional substrate versatility and robust scalability up to the Gram scale, establishing a stable platform for the synthesis of 3-aminobenzofuran derivative. The successful synthesis paves the way for further biological evaluations with potential implications in scientific research.
Collapse
Affiliation(s)
- Rong-Rong Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China; (R.-R.Z.)
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Technology, Ministry of Industry and Information Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Xi-Qiang Hou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China; (R.-R.Z.)
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Technology, Ministry of Industry and Information Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China; (R.-R.Z.)
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Technology, Ministry of Industry and Information Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
3
|
Chen Y, Chen J, Zhong L, Zhang Y, Zhan R, Huang H, Xue Y. Enantioselective synthesis of spirooxindole-pyran derivatives via a remote inverse-electron-demand Diels-Alder reaction of β,γ-unsaturated amides. Org Biomol Chem 2024; 22:3198-3203. [PMID: 38563151 DOI: 10.1039/d4ob00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Novel construction methods for obtaining 3,4'-pyran spirooxindole heterocyclic skeletons have always been the focus of attention. Herein, we report a highly enantioselective inverse-electron-demand oxa-Diels-Alder cycloaddition reaction of a β,γ-unsaturated pyrazole amide and a N-diphenyl isatin-derived oxodiene using a bifunctional catalyst. In addition, large-scale experiments confirmed the reliability of the reaction. The resultant products of this study can be further transformed.
Collapse
Affiliation(s)
- Yuzhen Chen
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China.
| | - Jiajia Chen
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| | - Lin Zhong
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| | - Yili Zhang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
| | - Yongbo Xue
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China.
| |
Collapse
|
4
|
Huang BW, Han JL. Regioselectivity Switch between Enantioselective 1,2- and 1,4-Addition of Allyl Aryl Ketones with 2,3-Dioxopyrrolidines. J Org Chem 2023; 88:16376-16390. [PMID: 37948045 DOI: 10.1021/acs.joc.3c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A vinylogous addition reaction of allyl aryl ketones with good yields and excellent regioselectivity catalyzed by squaramide catalysts has been developed. A series of chiral tertiary alcohols and bicyclic pyrrolidones could be synthesized in good to excellent yields, enantioselectivities, and diaseteroselectivities. Both experimental results and DFT calculations indicate that 1,2-addition reaction is favorable when the reaction is employed at a lower temperature, while the 1,4-addition/cyclization pathway is favorable when the reaction is employed at a higher temperature. Furthermore, the formation of compound 4 can potentially arise from either the 1,4-addition/cyclization pathway or retro-aldol reaction of compound 3, followed by subsequent 1,4-addition/cyclization.
Collapse
Affiliation(s)
- Bo-Wei Huang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227 Taiwan, R.O.C
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, Taichung City 40227 Taiwan, R.O.C
| |
Collapse
|
5
|
Zeng L, Liu S, Lan Y, Gao L. Catalytic asymmetric oxa-Diels-Alder reaction of acroleins with simple alkenes. Nat Commun 2023; 14:3511. [PMID: 37316484 DOI: 10.1038/s41467-023-39184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
The catalytic asymmetric inverse-electron-demand oxa-Diels-Alder (IODA) reaction is a highly effective synthetic method for creating enantioenriched six-membered oxygen-containing heterocycles. Despite significant effort in this area, simple α,β-unsaturated aldehydes/ketones and nonpolarized alkenes are seldom utilized as substrates due to their low reactivity and difficulties in achieving enantiocontrol. This report describes an intermolecular asymmetric IODA reaction between α-bromoacroleins and neutral alkenes that is catalyzed by oxazaborolidinium cation 1f. The resulting dihydropyrans are produced in high yields and excellent enantioselectivities over a broad range of substrates. The use of acrolein in the IODA reaction produces 3,4-dihydropyran with an unoccupied C6 position in the ring structure. This unique feature is utilized in the efficient synthesis of (+)-Centrolobine, demonstrating the practical synthetic utility of this reaction. Additionally, the study found that 2,6-trans-tetrahydropyran can undergo efficient epimerization into 2,6-cis-tetrahydropyran under Lewis acidic conditions. This structural core is widespread in natural products.
Collapse
Affiliation(s)
- Lei Zeng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China.
- ZhengZhou JiShu Institute of AI Science, Zhengzhou, 450000, P. R. China.
| | - Lizhu Gao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China.
| |
Collapse
|
6
|
Bania N, Barman D, Pan SC. Organocatalytic Asymmetric Inverse-Electron-Demand Diels-Alder Reaction between Alkylidene Pyrazolones and Allyl Ketones: Access to Tetrahydropyrano[2,3- c]pyrazoles. J Org Chem 2023. [PMID: 37262311 DOI: 10.1021/acs.joc.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Herein we report a catalytic asymmetric inverse-electron-demand Diels-Alder reaction between alkylidene pyrazolones and allyl ketones. Allyl ketone gets activated by a bifunctional thiourea catalyst and acts as a dienolate in this reaction. The trisubstituted tetrahydropyrano[2,3-c]pyrazoles were obtained in moderate to good yields with high diastereo- and enantioselectivities. Few applications, including a decarbonylation reaction, have been demonstrated.
Collapse
Affiliation(s)
- Nimisha Bania
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dipankar Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Yang S, Wang HQ, Gao JN, Tan WX, Zhang YC, Shi F. Lewis Acid‐Catalyzed (3+2) Cycloaddition of 2‐Indolylmethanols with β,γ‐Unsaturated α‐Ketoesters. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang Yang
- Jiangsu Normal University department of chemistry CHINA
| | - Hai-Qing Wang
- Jiangsu Normal University department of chemistry CHINA
| | - Jun-Nan Gao
- Jiangsu Normal University department of chemistry CHINA
| | - Wen-Xin Tan
- Jiangsu Normal University department of chemistry CHINA
| | - Yu-Chen Zhang
- Jiangsu Normal University department of chemistry CHINA
| | - Feng Shi
- Jiangsu Normal University School of Chemistry and Chemical Engineering Tongshan New District, Shanghai Road 101 221116 Xuzhou CHINA
| |
Collapse
|
8
|
Li TH, Niu C, Du DM. Enantioselective synthesis of isoxazole-containing spirooxindole tetrahydroquinolines via squaramide-catalysed cascade reactions. Org Biomol Chem 2022; 20:5582-5588. [PMID: 35796306 DOI: 10.1039/d2ob00864e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A class of o-sulfonylaminostyryl isoxazole synthons were designed and demonstrated to be useful building blocks in asymmetric cascade aza-Michael/Michael reaction with 3-olefinic oxindoles. This squaramide-catalysed cascade reaction afforded structurally complex isoxazole-containing spirooxindole tetrahydroquinolines bearing three contiguous stereocenters in good to excellent yields (up to 99%) with high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to 88% ee). Moreover, the gram-scale synthesis and synthetic transformations were also demonstrated.
Collapse
Affiliation(s)
- Tong-Hao Li
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| | - Cheng Niu
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| | - Da-Ming Du
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| |
Collapse
|
9
|
Yang KX, Ji DS, Zheng H, Gu Y, Xu PF. Organocatalytic inverse-electron-demand Diels-Alder reaction between 5-alkenyl thiazolones and β,γ-unsaturated carbonyl compounds. Chem Commun (Camb) 2022; 58:4227-4230. [PMID: 35285468 DOI: 10.1039/d2cc00457g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An inverse-electron-demand oxa-Diels-Alder reaction of 5-alkenyl thiazolones with β,γ-unsaturated carbonyl compounds enabled by quinine thiourea was studied, which allows the enantioselective synthesis of a broad range of highly functionalized pyranthiazoles bearing three continuous stereocenters. This protocol is adaptable to a wide scope of substrates and has great potential for scale-up synthesis and facile transformation.
Collapse
Affiliation(s)
- Kai-Xuan Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dong-Sheng Ji
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
10
|
Deng R, Han TJ, Gao X, Yang YF, Mei GJ. Further developments of β,γ-unsaturated α-ketoesters as versatile synthons in asymmetric catalysis. iScience 2022; 25:103913. [PMID: 35243262 PMCID: PMC8881726 DOI: 10.1016/j.isci.2022.103913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
11
|
Lewis acid-catalyzed [4 + 2] cycloaddition of 3-alkyl-2-vinylindoles with β,γ-unsaturated α-ketoesters. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Zhang H, He J, Chen Y, Zhuang C, Jiang C, Xiao K, Su Z, Ren X, Wang T. Regio‐ and Stereoselective Cascade of β,γ‐Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro‐Fused [2,3‐b] Skeletons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yayun Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610064 P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
13
|
Laina‐Martín V, Fernández‐Salas JA, Alemán J. Organocatalytic Strategies for the Development of the Enantioselective Inverse-electron-demand Hetero-Diels-Alder Reaction. Chemistry 2021; 27:12509-12520. [PMID: 34132427 PMCID: PMC8456916 DOI: 10.1002/chem.202101696] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Cycloaddition reactions, in particular Diels-Alder reactions, have attracted a lot of attention from organic chemists since they represent one of the most powerful methodologies for the construction of carbon-carbon bonds. In particular, inverse-electron-demand hetero-Diels-Alder reactions have been an important breakthrough for the synthesis of heterocyclic compounds. Among all their variants, the organocatalytic enantioselective version has been widely explored since the asymmetric construction of diversely functionalized scaffolds under reaction conditions encompassed within the green chemistry field is of great interest. In this review, a profound revision on the latest advances on the organocatalytic asymmetric inverse-electron demand hetero-Diels-Alder reaction is shown.
Collapse
Affiliation(s)
- Víctor Laina‐Martín
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
| | - Jose A. Fernández‐Salas
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049-MadridSpain
| | - José Alemán
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049-MadridSpain
| |
Collapse
|
14
|
Zhang H, He J, Chen Y, Zhuang C, Jiang C, Xiao K, Su Z, Ren X, Wang T. Regio- and Stereoselective Cascade of β,γ-Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro-Fused [2,3-b] Skeletons. Angew Chem Int Ed Engl 2021; 60:19860-19870. [PMID: 34213051 DOI: 10.1002/anie.202106046] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Chiral (dihydro)furo-fused heterocycles are significant structural motifs in numerous natural products, functional materials and pharmaceuticals. Therefore, developing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein, we develop an effective, modular method by a dipeptide-phosphonium salt-catalyzed regio- and stereoselective cascade reaction of readily available linear β,γ-unsaturated ketones with aromatic alkenes, affording a wide variety of structurally fused heterocyclic molecules in high yields with excellent stereoselectivities. Moreover, mechanistic investigations revealed that the bifunctional phosphonium salt controlled the regio- and stereoselectivities of this cascade reaction, particularly proceeding through the initial ketone α-addition followed by O-participated substitution; and the multiple hydrogen-bonding interactions between Brønsted acid moieties of catalyst and nitro group of aromatic alkene were crucial in asymmetric induction. Given the generality, versatility, and high efficiency of this method, we anticipate that it will have broad synthetic utilities.
Collapse
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yayun Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610064, P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
15
|
Oiarbide M, Palomo C. Extended Enolates: Versatile Intermediates for Asymmetric C-H Functionalization via Noncovalent Catalysis. Chemistry 2021; 27:10226-10246. [PMID: 33961323 PMCID: PMC8361983 DOI: 10.1002/chem.202100756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Catalyst-controlled functionalization of unmodified carbonyl compounds is a relevant operation in organic synthesis, especially when high levels of site- and stereoselectivity can be attained. This objective is now within reach for some subsets of enolizable substrates using various types of activation mechanisms. Recent contributions to this area include enantioselective transformations that proceed via transiently generated noncovalent di(tri)enolate-catalyst coordination species. While relatively easier to form than simple enolate congeners, di(tri)enolates are ambifunctional in nature and so control of the reaction regioselectivity becomes an issue. This Minireview discusses in some detail this and other problems, and how noncovalent activation approaches based on metallic and metal free catalysts have been developed to advance the field.
Collapse
Affiliation(s)
- Mikel Oiarbide
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHUManuel Lardizabal 320018San SebastiánSpain
| | - Claudio Palomo
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHUManuel Lardizabal 320018San SebastiánSpain
| |
Collapse
|
16
|
Biswas A, Ghosh A, Shankhdhar R, Chatterjee I. Squaramide Catalyzed Asymmetric Synthesis of Five‐ and Six‐Membered Rings. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anup Biswas
- Department of Chemistry Hooghly Women's College Hooghly West Bengal India
| | - Avisek Ghosh
- Department of Chemistry Indian Institute of Technology- Ropar India
| | - Rajat Shankhdhar
- Department of Chemistry Indian Institute of Technology- Ropar India
| | | |
Collapse
|
17
|
Zhang Y, Wei Y, Shi M. A silver-catalyzed domino inverse electron-demand oxo-Diels-Alder reaction of 3-cyclopropylideneprop-2-en-1-ones with 2,3-dioxopyrrolidines via cyclobutane-fused furan. Chem Commun (Camb) 2021; 57:3599-3602. [PMID: 33710234 DOI: 10.1039/d1cc00707f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silver-catalyzed diastereoselective one-pot domino cyclization-migration/inverse electron-demand oxo-Diels-Alder reaction has been disclosed in this communication through the in situ generated cyclobutane-fused furan intermediate with 4-vinyl-2,3-dioxopyrrolidine for the construction of 2-oxopyrrolidine-fused tricyclic compounds in moderate to good yields with a broad substrate scope under mild conditions. This new synthetic protocol features good efficiency and atom- and step-economy. A plausible reaction mechanism has also been proposed on the basis of previous reports, NMR tracing and control experiments.
Collapse
Affiliation(s)
- Yanshun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China.
| | | | | |
Collapse
|
18
|
Geng Y, Hua Y, Jia S, Wang M. Direct Asymmetric α‐Selective Mannich Reaction of β,γ‐Unsaturated Ketones with Cyclic α‐Imino Ester: Divergent Synthesis of Cyclocanaline and Tetrahydro Pyridazinone Derivatives. Chemistry 2021; 27:5130-5135. [DOI: 10.1002/chem.202100284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Yu‐Huan Geng
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Yuan‐Zhao Hua
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Shi‐Kun Jia
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Min‐Can Wang
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| |
Collapse
|