1
|
Yang C, Li B, Zhang X, Fan X. Synthesis of Indenone-Fused Pyran Derivatives from Aryl Enaminones and Cyclopropenones through Unsymmetrical Relay C-H Bond Activation and Double C-C/C-O Bond Formation. Org Lett 2024; 26:6602-6607. [PMID: 39078057 DOI: 10.1021/acs.orglett.4c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Presented herein is a novel synthesis of indenone-fused pyran derivatives via the cascade reactions of aryl enaminones with cyclopropenones. The formation of products involves a one-pot cascade procedure consisting of aryl C-H bond and enamine C-H bond functionalization along with C-C bond cleavage of cyclopropenone and 1,3-rearrangement of the in situ-formed allylic alcohol moiety followed by intramolecular O-nucleophilic addition and Me2NH elimination. To our knowledge, this is the first synthesis of indenone-fused pyran derivatives via simultaneous formation of both indenone and pyran scaffolds through concurrent unsymmetrical relay C-H bond activation and double C-C/C-O bond formation. Moreover, the usefulness of this method is further showcased by its suitability for large-scale synthetic scenarios and diverse transformations of products.
Collapse
Affiliation(s)
- Chun Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Nan J, Huang Q, Men X, Yang S, Wang J, Ma Y. Palladium-catalyzed denitrogenation/vinylation of benzotriazinones with vinylene carbonate. Chem Commun (Camb) 2024; 60:3571-3574. [PMID: 38469678 DOI: 10.1039/d4cc00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Herein, a novel Pd-catalyzed denitrogenation/vinylation of benzotriazinones using vinylene carbonate as the vinylation reagent is reported. This transformation demonstrates an unprecedented skeletal editing approach, effectively converting NN to CC fragments in situ and synthesizing a collection of isoquinolinones with broad-spectrum functional group tolerance. Moreover, the quite concise reaction system and late-stage modification of bioactive molecules comprehensively underscore the practical potential of this protocol.
Collapse
Affiliation(s)
- Jiang Nan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an, 710021, China
| | - Qiong Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xinran Men
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuai Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jing Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Li W, Yu Y, Yang J, Fu K, Zhang X, Shi S, Li T. Synthesis of Fluoren-9-ones via Pd-Catalyzed Annulation of 2-Iodobiphenyls with Vinylene Carbonate. Chem Asian J 2024; 19:e202301040. [PMID: 38019114 DOI: 10.1002/asia.202301040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
A palladium-catalyzed reaction for intermolecular selective C-H cyclocarbonylation of 2-iodobiphenyls is described. Intriguingly, the vinylene carbonate acts as a carbon monoxide transfer agent to enable the annulation reaction. Moreover, as a versatile synthon, fluoren-9-one can be transformed into a variety of functionalized organic molecules, such as [1,1'-biphenyl]-2-carboxylic acid, 1'H,3'H-spiro[fluorene-9,2'-perimidine] and N-tosylhydrazones.
Collapse
Affiliation(s)
- Wenguang Li
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Company Limited, Henan, 473000, China
| | - Yongqi Yu
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Jie Yang
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Kaifang Fu
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Xu Zhang
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Shukui Shi
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Ting Li
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| |
Collapse
|
4
|
Roy P, Shrestha D, Akhtar MS, Lee YR. Rh-Catalyzed Annulation of Enaminones with Maleimides for Functionalized Aza-spiro α-Tetralones and Benzo[ e]isoindoles via C-H Activation/C═C Bond Cleavage. Org Lett 2024; 26:142-147. [PMID: 38109110 DOI: 10.1021/acs.orglett.3c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
An unprecedented strategy for Rh-catalyzed C-H activation/C═C bond cleavage of enaminones is described for the construction of biologically interesting aza-spiro α-tetralones and benzo[e]isoindoles. This protocol provides diversely functionalized aza-spiro α-tetralones and benzo[e]isoindoles in good yields via a [4 + 2] annulation of the exomaleimides and maleimides. This strategy displays a good substrate scope, outstanding functional group tolerance, and excellent regioselectivity.
Collapse
Affiliation(s)
- Prasanta Roy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Divya Shrestha
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Kondalarao K, Sau S, Sahoo AK. Sulfoximine Assisted C-H Activation and Annulation via Vinylene Transfer: Access to Unsubstituted Benzothiazines. Molecules 2023; 28:5014. [PMID: 37446676 PMCID: PMC10343390 DOI: 10.3390/molecules28135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we report the synthesis of unsubstituted 1,2-benzothiazines through a redox-neutral Rh(III)-catalyzed C-H activation and [4+2]-annulation of S-aryl sulfoximines with vinylene carbonate. Notably, the introduction of an N-protected amino acid ligand significantly enhances the reaction rate. The key aspect of this redox-neutral process is the utilization of vinylene carbonate as an oxidizing acetylene surrogate and an efficient vinylene transfer agent. This vinylene carbonate enables the cyclization with the sulfoximine motifs, successfully forming a diverse array of 1,2-benzothiazine derivatives in moderate to good yields. Importantly, this study highlights the potential of Rh(III)-catalyzed C-H activation and [4+2]-annulation reactions for the synthesis of optically pure 1,2-benzothiazines with high enantiomeric purity.
Collapse
Affiliation(s)
| | | | - Akhila K. Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India; (K.K.); (S.S.)
| |
Collapse
|
6
|
Suresh V, Naveen Kumar M, Nagireddy A, Sridhar Reddy M. Rhodium‐Catalyzed Dual C−H Activation for Regioselective Triple Annulation of Enaminones: Access to Polycyclic Naphthopyran Derivatives. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Vavilapalli Suresh
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Muniganti Naveen Kumar
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Attunuri Nagireddy
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Maddi Sridhar Reddy
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| |
Collapse
|
7
|
Liu D, Song S, Chen L, Zhang M, Liu Z, Lu X, Huang J, Yu F. Access to thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives via a regioselective oxidative annulation reaction. Org Biomol Chem 2023; 21:2596-2602. [PMID: 36891944 DOI: 10.1039/d3ob00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A metal-free regioselective oxidative annulation reaction of readily available 2,4-pentanediones with primary amines has been described. This protocol provides a divergent strategy for the incorporation of various radical donors into 5-alkylidene 3-pyrrolin-2-one skeletons, producing a variety of thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives. Moreover, the diverse synthetic transformations of the 5-alkylidene 3-pyrrolin-2-one products were also investigated.
Collapse
Affiliation(s)
- Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Xihang Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| |
Collapse
|
8
|
Chen D, Wan C, Liu Y, Wan JP. Three-Component Fusion to Pyrazolo[5,1- a]isoquinolines via Rh-Catalyzed Multiple Order Transformation of Enaminones. J Org Chem 2023; 88:4833-4838. [PMID: 36947699 DOI: 10.1021/acs.joc.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
A facile and practical method for the synthesis of fused tricyclic pyrazolo[5,1-a]isoquinolines has been realized via the reactions of enaminones, hydrazine hydrochloride, and internal alkynes. By means of Rh catalysis, the extraordinary high-order bond functionalization, including the transformation of aryl C-H, ketone C═O, and alkenyl C-N bonds in the enaminones, marks the major feature of the cascade reactions. The results disclose the individual advantage of enaminones in the design of novel and efficient synthetic methods.
Collapse
Affiliation(s)
- Demao Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Changfeng Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| |
Collapse
|
9
|
Yang Z, Liu C, Lei J, Zhou Y, Gao X, Li Y. Rh(III)-catalyzed C-H/C-C bond annulation of enaminones with iodonium ylides to form isocoumarins. Chem Commun (Camb) 2022; 58:13483-13486. [PMID: 36383089 DOI: 10.1039/d2cc05899e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A straightforward approach to synthesise isocoumarins via Rh(III)-catalyzed C-H/C-C bond activation/annulation cascade of enaminones and iodonium ylides has been explored. The established protocol is characterized by an exceedingly simple reaction system, high regioselectivity and good functional group tolerance. Moreover, this strategy may provide a new route to cleavage of the C(sp2)-C(O) bond of unstrained ketones.
Collapse
Affiliation(s)
- Zi Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Chaoshui Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Jieni Lei
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yi Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Xiaohui Gao
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yaqian Li
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| |
Collapse
|
10
|
Wang Y, Zhang Q, Hao Y, Luo C, Huang X, Guo L, Wu Y. C–H Activation-Engaged Synthesis of Diverse Fused-Heterocycles from the Reactions of 3-Phenyl-1,2,4-oxadiazol-5(2 H)-ones with Vinylene Carbonate. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuerong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Qingyao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Yingdi Hao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Cankun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Xin Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu 610041, Sichuan, People’s Republic of China
| |
Collapse
|
11
|
Liu M, Yan K, Wen J, Zhang N, Chen X, Li X, Wang X. PIFA Induced Regioselective C–H Chalcogenylation of Benzo[d]imidazo[5,1‐b]thiazoles under Mild Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Min Liu
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Kelu Yan
- Qufu Normal University School of Chemistry and Chemical Engineering Jingxuan Road 57 273165 Qufu CHINA
| | - Jiangwei Wen
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Ning Zhang
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xinyu Chen
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xue Li
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xiu Wang
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| |
Collapse
|
12
|
Huang G, Yu JT, Pan C. Rhodium‐Catalyzed C–H Activation/Annulation of N‐Aryl‐Pyrazolidinones with Vinylene Carbonate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gao Huang
- Changzhou University School of Petrochemical Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering Changzhou 213000 Changzhou CHINA
| | - Changduo Pan
- Jiangsu University of Technology School of chemical and environmental engineering CHINA
| |
Collapse
|
13
|
Iridium-catalyzed oxidative coupling and cyclization of NH isoquinolones with olefins leading to isoindolo[2,1-b]isoquinolin-5(7H)-one derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Yan K, Liu M, Wen J, Liu X, Wang X, Sui X, Shang W, Wang X. Synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils. NEW J CHEM 2022. [DOI: 10.1039/d2nj00663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils has been developed.
Collapse
Affiliation(s)
- Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Min Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiao Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xinlei Sui
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Wenda Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
15
|
Gu H, Jin X, Li J, Li H, Liu J. Recent Progress in Transition Metal-Catalyzed C—H Bond Activation of N-Aryl Phthalazinones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|