1
|
Gao Y, Vogus D, Zhao Z, He W, Krishnan V, Kim J, Shi Y, Sarode A, Ukidve A, Mitragotri S. Injectable hyaluronic acid hydrogels encapsulating drug nanocrystals for long-term treatment of inflammatory arthritis. Bioeng Transl Med 2022; 7:e10245. [PMID: 35111947 PMCID: PMC8780912 DOI: 10.1002/btm2.10245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023] Open
Abstract
Antiproliferative chemotherapeutic agents offer a potential effective treatment for inflammatory arthritis. However, their clinical application is limited by high systemic toxicity, low joint bioavailability as well as formulation challenges. Here, we report an intra-articular drug delivery system combining hyaluronic acid hydrogels and drug nanocrystals to achieve localized and sustained delivery of an antiproliferative chemotherapeutic agent camptothecin for long-term treatment of inflammatory arthritis. We synthesized a biocompatible, in situ-forming injectable hyaluronic acid hydrogel using a naturally occurring click chemistry: cyanobenzothiazole/cysteine reaction, which is the last step reaction in synthesizing D-luciferin in fireflies. This hydrogel was used to encapsulate camptothecin nanocrystals (size of 160-560 nm) which released free camptothecin in a sustained manner for 4 weeks. In vivo studies confirmed that the hydrogel remained in the joint over 4 weeks. By using the collagen-induced arthritis rat model, we demonstrate that the hydrogel-camptothecin formulation could alleviate arthritis severity as indicated by the joint size and interleukin-1β level in the harvested joints, as well as from histological and microcomputed tomography evaluation of joints. The hydrogel-nanocrystal formulation strategy described here offers a potential solution for intra-articular therapy for inflammatory arthritis.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Douglas Vogus
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Zongmin Zhao
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Wei He
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Vinu Krishnan
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Jayoung Kim
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Yujie Shi
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Apoorva Sarode
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Anvay Ukidve
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Samir Mitragotri
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
2
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
3
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
4
|
Jiao L, Yan H, Xu W, Wu Y, Gu W, Li H, Du D, Lin Y, Zhu C. Self-Assembly of All-Inclusive Allochroic Nanoparticles for the Improved ELISA. Anal Chem 2019; 91:8461-8465. [DOI: 10.1021/acs.analchem.9b01527] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - He Li
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
5
|
Lyu Y, Xiao Q, Li Y, Wu Y, He W, Yin L. "Locked" cancer cells are more sensitive to chemotherapy. Bioeng Transl Med 2019; 4:e10130. [PMID: 31249880 PMCID: PMC6584094 DOI: 10.1002/btm2.10130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022] Open
Abstract
The treatment of metastatic cancer is a great challenging issue throughout the world. Conventional chemotherapy can kill the cancer cells and, whereas, would exacerbate the metastasis and induce drug resistance. Here, a new combinatorial treatment strategy of metastatic cancer was probed via subsequentially dosing dual nanomedicines, marimastat-loaded thermosensitive liposomes (MATT-LTSLs) and paclitaxel nanocrystals (PTX-Ns), via intravenous and intratumoral injection. First, the metastasis was blocked and cancer cells were locked in the tumor microenvironment (TME) by delivering the matrix metalloproteinase (MMP) inhibitor, MATT, to the tumor with LTSLs, downregulating the MMPs by threefold and reducing the degradation of the extracellular matrix. And then, the "locked" cancer cells were efficiently killed via intratumoral injection of the other cytotoxic nanomedicine, PTX-Ns, along with no metastasis and 100% inhibition of tumor growth. This work highlights the importance of the TME's integrity in the chemotherapy duration. We believe this is a generalized strategy for cancer treatment and has potential guidance for the clinical administration.
Collapse
Affiliation(s)
- Yaqi Lyu
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Qingqing Xiao
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Yi Li
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Yubing Wu
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Wei He
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Lifang Yin
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| |
Collapse
|
6
|
Abstract
The field of nanomedicine has made substantial strides in the areas of therapeutic and diagnostic development. For example, nanoparticle-modified drug compounds and imaging agents have resulted in markedly enhanced treatment outcomes and contrast efficiency. In recent years, investigational nanomedicine platforms have also been taken into the clinic, with regulatory approval for Abraxane® and other products being awarded. As the nanomedicine field has continued to evolve, multifunctional approaches have been explored to simultaneously integrate therapeutic and diagnostic agents onto a single particle, or deliver multiple nanomedicine-functionalized therapies in unison. Similar to the objectives of conventional combination therapy, these strategies may further improve treatment outcomes through targeted, multi-agent delivery that preserves drug synergy. Also, similar to conventional/unmodified combination therapy, nanomedicine-based drug delivery is often explored at fixed doses. A persistent challenge in all forms of drug administration is that drug synergy is time-dependent, dose-dependent and patient-specific at any given point of treatment. To overcome this challenge, the evolution towards nanomedicine-mediated co-delivery of multiple therapies has made the potential of interfacing artificial intelligence (AI) with nanomedicine to sustain optimization in combinatorial nanotherapy a reality. Specifically, optimizing drug and dose parameters in combinatorial nanomedicine administration is a specific area where AI can actionably realize the full potential of nanomedicine. To this end, this review will examine the role that AI can have in substantially improving nanomedicine-based treatment outcomes, particularly in the context of combination nanotherapy for both N-of-1 and population-optimized treatment.
Collapse
Affiliation(s)
- Dean Ho
- Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore.
| | | | | |
Collapse
|
7
|
Letchumanan I, Gopinath SCB, Md Arshad MK, Anbu P, Lakshmipriya T. Gold nano-urchin integrated label-free amperometric aptasensing human blood clotting factor IX: A prognosticative approach for "Royal disease". Biosens Bioelectron 2019; 131:128-135. [PMID: 30826647 DOI: 10.1016/j.bios.2019.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
Abstract
This article is clearly presenting the development of a biosensor for human factor IX (FIX) to diagnose the blood clotting deficiency, a so-called 'Royal disease' using an interdigitated electrode (IDE) with the zinc oxide surface modification. Gold nano-urchins (GNUs) with 60 nm in diameter was integrated into a streptavidin-biotinylated aptamer strategy to enhance the active surface area. Two different comparative studies have been done to validate the system to be practiced in the current work holds with a higher capability for the high-performance sense. Whereby, the presence and absence of GNUs in the aptasensing system for FIX interaction were investigated using the amperometric measurement, using a linear sweep voltage of 0-2 V at 0.01 V step voltage. The detection limit was 6 pM based on 3σ calculation when GNUs integrated aptamer assay was utilized for FIX detection, which shows 8 folds sensitivity enhancement comparing the condition in the absence of GNU and 50 folds higher than sensitive radio-isotope and surface plasmon resonance assays. Albeit, the surface and molecular characterizations were well demonstrated by scanning electron microscopy, atomic force microscopy, 3D nano-profilometry and further supports were rendered by UV-Vis spectroscopy and Enzyme-linked apta-sorbent assay (ELASA). Furthermore, the spiking experiment was done by FIX-spikes in human blood serum in order to demonstrate the stability with a higher non-fouling.
Collapse
Affiliation(s)
- Iswary Letchumanan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - M K Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra, Arau 02600, Perlis, Malaysia
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Thangavel Lakshmipriya
- Centre of Innovative Nanostructure & Nanodevices, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
8
|
Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng Transl Med 2019; 4:5-16. [PMID: 30680314 PMCID: PMC6336669 DOI: 10.1002/btm2.10122] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022] Open
Abstract
Poorly soluble small molecules typically pose translational hurdles owing to their low solubility, low bioavailability, and formulation challenges. Nanocrystallization is a versatile method for salvaging poorly soluble drugs with the added benefit of a carrier-free delivery system. In this review, we provide a comprehensive analysis of nanocrystals with emphasis on their clinical translation. Additionally, the review sheds light on clinically approved nanocrystal drug products as well as those in development.
Collapse
Affiliation(s)
- Maria Jarvis
- Dept. of BioengineeringRice UniversityHoustonTX 77030
| | - Vinu Krishnan
- John A. Paulson School of Engineering and Applied SciencesWyss Institute, Harvard UniversityCambridgeMA 02138
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesWyss Institute, Harvard UniversityCambridgeMA 02138
| |
Collapse
|