1
|
Park Y, Yang J, Hyun H. A Phthalimide-Functionalized Heptamethine Cyanine Dye for Tumor-Targeted Photothermal Therapy. Cancers (Basel) 2024; 16:4155. [PMID: 39766055 PMCID: PMC11674857 DOI: 10.3390/cancers16244155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND A phthalimide-functionalized heptamethine cyanine dye, named Ph790H, is used for targeted photothermal cancer therapy in vivo. We highlight that the chemical structure of Ph790H is newly designed and synthesized for the first time in this study. OBJECTIVES By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, the bifunctional near-infrared (NIR) fluorescent dye Ph790H can be preferentially accumulated in tumor without the need for additional targeting ligands, which is defined as the "structure-inherent tumor targeting" concept. METHODS The phototherapeutic effect of Ph790H is evaluated in HT-29 human colorectal cancer xenografts to be used as a cancer-targeting photothermal agent. RESULTS The results reveal that the Ph790H shows enhanced tumor accumulation in HT-29 xenografts 48 h post-injection with a high tumor-to-background ratio. After determination of the optimal timing for photothermal therapy (PTT), the HT-29 tumor-possessing nude mice pretreated with Ph790H are subsequently irradiated with an 808 nm NIR laser for 5 min. The tumor-targeted PTT treatment can efficiently inhibit the tumor development compared with that of control groups. Moreover, no tumor regrowth or Ph790H-induced mortality occurs after the treatment of Ph790H and laser irradiation during a period of monitoring. CONCLUSIONS Therefore, this work demonstrates that the bifunctional phototheranostic agent Ph790H can be utilized for targeted cancer imaging and fluorescence-guided phototherapy simultaneously.
Collapse
Affiliation(s)
- Yoonbin Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (Y.P.); (J.Y.)
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Juhui Yang
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (Y.P.); (J.Y.)
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (Y.P.); (J.Y.)
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| |
Collapse
|
2
|
Yu J, Rong J, Yuan S, He X, Chu X, Chen L, Liu Q, Hu S, Wang Z. Extending the emission peak tail of indole cyanine for deep-near-infrared bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124798. [PMID: 39008931 DOI: 10.1016/j.saa.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
We propose a novel strategy for tailoring the structure of fluorescent molecules to achieve emission at the tail end of the NIR-II window. The favorable spectroscopic properties and low cytotoxicity of YNs make them powerful tools for bioimaging. Notably, YN-4 exhibits a brightness 2.5 times greater than YN-3, 6 times that of IR-783, and 5 times that of ICG. This enhanced brightness enabled high-resolution imaging of mouse thoracic and abdominal cavities, tumor vasculature, and real-time monitoring of gastrointestinal motility using YN-4. Furthermore, covalent grafting of glucose onto the YN-Glu scaffold significantly improved tumor-targeting capability and facilitated tracking of glucose metabolism. This work aims to extend the application of fluorescent molecule imaging beyond the NIR-IIa window.
Collapse
Affiliation(s)
- Jiaying Yu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jie Rong
- State Key Laboratory of Organic Electronics and Information, Displays & Institute of Advanced Materials (IAM), Jiangsu Key, Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Shen Yuan
- School of Medicine, Nantong University, Nantong 226019, PR China
| | - Xiaofan He
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xianfeng Chu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Lucheng Chen
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaojun Hu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
3
|
Yu JF, Li J, Li M. An Intramolecular Rotor-Bridged Dimeric Cyanine Photothermal Transducer for Efficient Near-Infrared II Fluorescence Imaging-Guided Mitochondria-Targeted Phototherapy. ACS Sens 2024; 9:3581-3593. [PMID: 38958530 DOI: 10.1021/acssensors.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Near-infrared (NIR) heptamethine cyanine (HCy) dyes are promising photothermal transducers for image-guided cancer treatment owing to their prominent photophysical properties and high photothermal conversion ability. However, HCy photothermal transducers usually have poor photostability due to degradation induced by the self-generated reactive oxygen species. Herein, a novel mitochondria-targeting dimeric HCy dye, named dimeric oBHCy, is rationally designed, exhibiting strong near-infrared II (NIR-II) fluorescence emission, high photothermal conversion efficiency (PCE), and excellent photostability. The large π-conjugation and drastic intramolecular motion of the diphenol rotor in the dimeric oBHCy enhance the nonradiative energy dissipation and suppress the intersystem crossing process, thereby achieving a high PCE (49.2%) and improved photostability. Impressively, dimeric oBHCy can precisely target mitochondria and induce mitochondrial damage upon NIR light irradiation. Under the guidance of in vivo NIR-II fluorescence imaging, efficient NIR light-activated photothermal therapy of 4T1 breast tumors is accomplished with a tumor inhibitory rate of 96% following a single injection of the dimeric oBHCy. This work offers an innovative strategy for designing cyanine photothermal transducers with integrated NIR-II fluorescence and photothermal properties for efficient cancer theranostics.
Collapse
Affiliation(s)
- Jin-Feng Yu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jialian Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 PR China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
4
|
Yu H, Chen Q, Zheng M, Wang R, Wang H, Cheng L, Hu Y, Dai M, Du C, Luo W, Tan M, Cao Y, Guo Y, Ran H. Combination of MHI148 Targeted Photodynamic Therapy and STING Activation Inhibits Tumor Metastasis and Recurrence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29672-29685. [PMID: 38813586 DOI: 10.1021/acsami.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Metastasis and recurrence are notable contributors to mortality associated with breast cancer. Although immunotherapy has shown promise in mitigating these risks after conventional treatments, its effectiveness remains constrained by significant challenges, such as impaired antigen presentation by dendritic cells (DCs) and inadequate T cell infiltration into tumor tissues. To address these limitations, we developed a multifunctional nanoparticle platform, termed GM@P, which consisted of a hydrophobic shell encapsulating the photosensitizer MHI148 and a hydrophilic core containing the STING agonist 2'3'-cGAMP. This design elicited robust type I interferon responses to activate antitumor immunity. The GM@P nanoparticles loaded with MHI148 specifically targeted breast cancer cells. Upon exposure to 808 nm laser irradiation, the MHI148-loaded nanoparticles produced toxic reactive oxygen species (ROS) to eradicate tumor cells through photodynamic therapy (PDT). Notably, PDT stimulated immunogenic cell death (ICD) to foster the potency of antitumor immune responses. Furthermore, the superior photoacoustic imaging (PAI) capabilities of MHI148 enabled the simultaneous visualization of diagnostic and therapeutic procedures. Collectively, our findings uncovered that the combination of PDT and STING activation facilitated a more conducive immune microenvironment, characterized by enhanced DC maturation, infiltration of CD8+ T cells, and proinflammatory cytokine release. This strategy stimulated local immune responses to augment systemic antitumor effects, offering a promising approach to suppress tumor growth, inhibit metastasis, and prevent recurrence.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Qiaoqi Chen
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Min Zheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Ruoyao Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Haiyang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
- Department of Abdominal Wall, Hernia and Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Long Cheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yaqin Hu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Mingyuan Dai
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Chier Du
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Wenpei Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Mixiao Tan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yuan Guo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
5
|
Nie QW, Zhang X, Hu MH. Discovery of a mitochondrial G-quadruplex targeted fluorescent ligand via a slight variation on the near-infrared heptamethine cyanine scaffold. Int J Biol Macromol 2024; 269:132230. [PMID: 38729485 DOI: 10.1016/j.ijbiomac.2024.132230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
The heptamethine cyanine dyes are one kind of promising near-infrared (NIR) compounds, holding great potential in both diagnostic and therapeutic regions. Remolding such structures to realize detection of unclarified biotargets or interfering with them seems to be important in the field of chemical biology. In this study, we developed a fluorescent ligand (IR1) targeting mitochondrial G-quadruplexes (mitoG4s) by a slight variation on the typical NIR scaffold (IR780). This ligand could be applied for sensing mitoG4s by fluorescence, making it different from the unmodified dye whose fluorescence was quenched by mitoG4s. Then, IR1 was demonstrated to accumulate in the mitochondria through a mitochondrial membrane potential (MMP) dependent manner. Some of IR1 then bound to mitoG4s, causing mtDNA loss and mitochondrial dysfunction, which thereby triggered PANoptosis, including apoptosis, autophagy and pyroptosis. To the best of our knowledge, IR1 was the first NIR fluorescent ligand with emission centered at above 800 nm for mitoG4s, and the first example causing PANoptosis among the reported mitoG4-targeted ligands.
Collapse
Affiliation(s)
- Qian-Wen Nie
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiao Zhang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
6
|
Park Y, Park MH, Hyun H. Structure-Inherent Tumor-Targeted IR-783 for Near-Infrared Fluorescence-Guided Photothermal Therapy. Int J Mol Sci 2024; 25:5309. [PMID: 38791347 PMCID: PMC11121547 DOI: 10.3390/ijms25105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
IR-783, a commercially available near-infrared (NIR) heptamethine cyanine dye, has been used for selective tumor imaging in breast, prostate, cervical, and brain cancers in vitro and in vivo. Although the molecular mechanism behind the structure-inherent tumor targeting of IR-783 has not been well-demonstrated, IR-783 has unique properties such as a good water solubility and low cytotoxicity compared with other commercial heptamethine cyanine dyes. The goal of this study is to evaluate the phototherapeutic efficacy of IR-783 as a tumor-targeted photothermal agent in human colorectal cancer xenografts. The results demonstrate that IR-783 shows both the subcellular localization in HT-29 cancer cells and preferential accumulation in HT-29 xenografted tumors 24 h after its intravenous administration. Furthermore, the IR-783 dye reveals the superior capability to convert NIR light into heat energy under 808 nm NIR laser irradiation in vitro and in vivo, thereby inducing cancer cell death. Taken together, these findings suggest that water-soluble anionic IR-783 can be used as a bifunctional phototherapeutic agent for the targeted imaging and photothermal therapy (PTT) of colorectal cancer. Therefore, this work provides a simple and effective approach to develop biocompatible, hydrophilic, and tumor-targetable PTT agents for targeted cancer phototherapy.
Collapse
Affiliation(s)
- Yoonbin Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| |
Collapse
|
7
|
Chen P, Li S, Xu Z, Cabral H. Nanoassemblies of heptamethine cyanine dye-initiated poly(amino acid) enhance ROS generation for effective antitumour phototherapy. NANOSCALE HORIZONS 2024; 9:731-741. [PMID: 38505973 DOI: 10.1039/d3nh00584d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Phototherapy shows great potential for pinpoint tumour treatment. Heptamethine cyanine dyes like IR783 have high potential as agents for antitumour phototherapy due to their inherent tumour targeting ability, though their effectiveness in vivo is unsatisfactory for clinical translation. To overcome this limitation, we present an innovative strategy involving IR783-based polymeric nanoassemblies that improve the dye's performance as an antitumoural photosensitizer. In the formulation, IR783 is modified with cysteamine and used to initiate the ring-opening polymerization (ROP) of the N-carboxyanhydride of benzyl-L-aspartate (BLA), resulting in IR783-installed poly(BLA). Compared to free IR783, the IR783 dye in the polymer adopts a twisted molecular conformation and tuned electron orbital distribution, remarkably enhancing its optical properties. In aqueous environments, the polymers spontaneously assemble into nanostructures with 60 nm diameter, showcasing surface-exposed IR783 dyes that function as ligands for cancer cell and mitochondria targeting. Moreover, the nanoassemblies stabilized the dyes and enhanced the generation of reactive oxygen species (ROS) upon laser irradiation. Thus, in murine tumor models, a single injection of the nanoassemblies with laser irradiation significantly inhibits tumour growth with no detectable off-target toxicity. These findings highlight the potential for improving the performance of heptamethine cyanine dyes in antitumor phototherapy through nano-enabled strategies.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Shangwei Li
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Zhining Xu
- Polymer Chemistry and Physics Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Faculty of Science, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
8
|
Zhao X, Ma Y, Di J, Qiao Y, Yu J, Yin Y, Xi R, Meng M. Synergetic Pyroptosis with Apoptosis Improving Phototherapy of Mitochondria-Targeted Cyanines with Superior Photostability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12310-12320. [PMID: 38412031 DOI: 10.1021/acsami.3c19205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pyroptosis has been reported to improve the antitumor effect by evoking a more intense immune response and a therapeutic effect. For phototherapy, several photosensitizers have been found to initiate pyroptosis. However, the effect of pyroptosis associated with apoptosis in enhancing the antitumor therapy needs sufficient characterization, especially under long-term treatment. As a NIR photosensitizer, heptamethine cyanines have been discovered for anticancer phototherapy for deep tissue penetration and inherent tumor-targeted capability. However, they are not quite stable for long-term performance. To investigate the effect of pyroptosis along with apoptosis on the anticancer immune responses and phototherapy, here, we chemically modulate the cyanine IR780 to regulate hydrophobicity, stability, and intracellular targeting. Two photosensitizers, T780T-TPP and T780T-TPP-C12, were finally optimized and showed excellent photostability with high photothermal conversion efficiency. Although the cellular uptake of the two molecules was both mediated by OATP transporters, T780T-TPP induced tumor cell death via pyroptosis and apoptosis and accumulated in tumor accumulation, while T780T-TPP-C12 was prone to accumulate in the liver. Ultimately, via one injection-multiple irradiation treatment protocol, T780T-TPP displayed a significant antitumor effect, even against the growth of large tumors (200 mm3).
Collapse
Affiliation(s)
- Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Jianhao Di
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yanqi Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Jie Yu
- State Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
9
|
Foglietta F, Panzanelli P, Pizzo R, Giacone M, Pepa CD, Durando G, Serpe L, Canaparo R. Evaluation of the cytotoxic and immunomodulatory effects of sonodynamic therapy in human pancreatic cancer spheroids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112842. [PMID: 38232641 DOI: 10.1016/j.jphotobiol.2024.112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Sonodynamic therapy (SDT) exploits the energy generated by ultrasound (US) to activate sound-sensitive drugs (sonosensitizers), leading to the generation of reactive oxygen species (ROS) and cancer cell death. Two-dimensional (2D) and three-dimensional (3D) cultures of human pancreatic cancer BxPC-3 cells were chosen as the models with which to investigate the therapeutic effects of the US-activated sonosensitizer IR-780 as pancreatic cancer is still one of the most lethal types of cancer. The effects of SDT, including ROS production, cancer cell death and immunogenic cell death (ICD), were extensively investigated. When subjected to US, IR-780 triggered significant ROS production and caused cancer cell death after 24 h (p ≤ 0.01). Additionally, the activation of dendritic cells (DCs) led to an effective immune response against the cancer cells undergoing SDT-induced death. BxPC-3 spheroids were developed and studied extensively to validate the findings observed in 2D BxPC-3 cell cultures. An analysis of the pancreatic cancer spheroid section revealed significant SDT-induced cancer cell death after 48 h after the treatment (p ≤ 0.01), with this being accompanied by the presence of SDT-induced damage-associated molecular patterns (DAMPs), such as calreticulin (CRT) and high mobility group box 1 (HMGB1). In conclusion, the data obtained demonstrates the anticancer efficacy of SDT and its immunomodulatory potential via action as an ICD-inducer.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Torino, Italy.
| | - Riccardo Pizzo
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Torino, Italy.
| | - Marta Giacone
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.
| | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.
| | - Gianni Durando
- National Institute of Metrological Research (INRIM), Strada delle Cacce 91, 10135 Torino, Italy.
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.
| |
Collapse
|
10
|
Xue Y, Chen K, Chen Y, Liu Y, Tang J, Zhang X, Liu J. Engineering Diselenide-IR780 Homodimeric Nanoassemblies with Enhanced Photodynamic and Immunotherapeutic Effects for Triple-Negative Breast Cancer Treatment. ACS NANO 2023; 17:22553-22570. [PMID: 37943026 DOI: 10.1021/acsnano.3c06290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Photodynamic therapy (PDT) has emerged as an efficient approach for non-invasive cancer treatment. However, organic small-molecule photosensitizers are often associated with defects in hydrophobicity, poor photostability, and aggregation-caused quenching, which limit their application. Usually, the carrier-assisted drug delivery system is a common strategy to solve the above obstacles, but additional carrier material could increase the risk of potential biological toxicity. The carrier-free drug delivery system with easy preparation and high drug-loading capability is proposed subsequently as a potential strategy to develop the clinical use of hydrophobic drugs. Herein, we rationally designed three IR780-based carrier-free nanosystems formed by carbon/disulfide/diselenide bond conjugated IR780-based homodimers. The IR780-based homodimers could self-assemble to form nanoparticles (DC-NP, DS-NP, DSe-NP) and exhibited higher reactive oxygen species generation capability and photostability than free IR780, in which DSe-NP with 808 nm laser irradiation performed best and resulted in the strongest cytotoxicity to 4T1 cells. Meanwhile, the glutathione consumption ability of DSe-NP boosted its PDT effect and then induced excessive oxidative stress of 4T1 cells, increasing antitumor efficacy by enhancing immunogenic cell death further. In tumor-bearing mice, DSe-NP displayed obvious tumor site accumulation, which obviously inhibited tumor growth and metastasis, and enhanced the immunological effect by effectively inducing dendritic cells to mature and activating T lymphocytes and natural killer cells. In summary, our study presented an IR780-based carrier-free nanodelivery system for a combination of PDT and immunity therapy and established expanding the application of organic small-molecule photosensitizers by an approach of carrier-free drug delivery system.
Collapse
Affiliation(s)
- Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Kaijin Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - You Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoge Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
11
|
Li Y, Zhang J, Zhu L, Jiang M, Ke C, Long H, Lin R, Ye C, Zhou X, Jiang ZX, Chen S. All-in-One Heptamethine Cyanine Amphiphiles for Dual Imaging-Guided Chemo-Photodynamic-Photothermal Therapy of Breast Cancer. Adv Healthc Mater 2023; 12:e2300941. [PMID: 37311077 DOI: 10.1002/adhm.202300941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Indexed: 06/15/2023]
Abstract
Developing a theranostic system that integrates multimodal imaging, synergistic therapeutic, and formulation entities is a promising strategy for efficient cancer treatment. However, the complexity and safety concerns of multiple functional entities hinder their clinical translation. Herein, versatile "all-in-one" heptamethine cyanine amphiphiles (PEG-Cy-Fs) with multiple favorable capabilities, including fluorine-19 magnetic resonance imaging (19 F MRI), near-infrared fluorescence imaging (NIR FLI), photodynamic therapy (PDT), photothermal therapy (PTT), polyethylene glycolation (PEGylation) and high biocompatibility, are developed for the convenient construction of theranostic platforms. Amphiphiles PEG-Cy-Fs are synthesized on a multi-hundred-milligram scale with high efficacy, which self-assembled with a chemotherapy drug tamoxifen (TAM) into monodisperse and stable nanoparticles (SoFoTm/PEG-Cy-F18 ) with "turned on" FLI, sensitive 19 F MRI, mitochondria-targeting ability, high PDT and PTT efficacy, and PEGylation-optimized pharmacokinetics. The selective accumulation of SoFoTm/PEG-Cy-F18 in xenograft MCF-7 tumor with a long retention time (>10 days) enabled 19 F MRI-NIR FLI-guided chemo-photodynamic-photothermal therapy (chemo-PDT-PTT) of breast cancer with high therapeutical index in mice. The "all-in-one" heptamethine cyanine amphiphile may facilitate the convenient and standardized preparation of high-performance theranostics systems for clinical translation.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Lijun Zhu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changsheng Ke
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hanxiong Long
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ruoyun Lin
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
12
|
Pan J, Du J, Hu Q, Liu Y, Zhang X, Li X, Zhou D, Yao Q, Long S, Fan J, Peng X. Photo-Induced Electron Transfer-Triggered Structure Deformation Promoting Near-Infrared Photothermal Conversion for Tumor Therapy. Adv Healthc Mater 2023; 12:e2301091. [PMID: 37321560 DOI: 10.1002/adhm.202301091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT) is a promising approach to cancer treatment. Heptamethine cyanine (Cy7) is an attractive photothermal reagent because of its large molar absorption coefficient, good biocompatibility, and absorption of near-infrared irradiation. However, the photothermal conversion efficiency (PCE) of Cy7 is limited without ingenious excitation-state regulation. In this study, the photothermal conversion ability of Cy7 is efficiently enhanced based on photo-induced electron transfer (PET)-triggered structural deformation. Three Cy7 derivatives, whose Cl is replaced by carbazole, phenoxazine, and phenothiazine at the meso-position (CZ-Cy7, PXZ-Cy7, and PTZ-Cy7), are presented as examples to demonstrate the regulation of the energy release of the excited states. Because the phenothiazine moiety exhibits an obvious PET-induced structural deformation in the excited state, which quenches the fluorescence and inhibits intersystem crossing of S1 →T1 , PTZ-Cy7 exhibits a PCE as high as 77.5%. As a control, only PET occurs in PXZ-Cy7, with a PCE of 43.5%. Furthermore, the PCE of CZ-Cy7 is only 13.0% because there is no PET process. Interestingly, PTZ-Cy7 self-assembles into homogeneous nanoparticles exhibiting passive tumor-targeting properties. This study provides a new strategy for excited-state regulation for photoacoustic imaging-guided PTT with high efficiency.
Collapse
Affiliation(s)
- Jingwei Pan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Yuan Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Xiaoxue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Danhong Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| |
Collapse
|
13
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
14
|
Yang T, Zhang X, Yang X, Li Y, Xiang J, Xiang C, Liu Z, Hai L, Huang S, Zhou L, Liang R, Gong P. A mitochondria-targeting self-assembled carrier-free lonidamine nanodrug for redox-activated drug release to enhance cancer chemotherapy. J Mater Chem B 2023; 11:3951-3957. [PMID: 37067569 DOI: 10.1039/d2tb02728c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mitochondria play a vital role in maintaining cellular homeostasis. In recent years, studies have found that mitochondria have an important role in the occurrence and development of tumors, and targeting mitochondria has become a new strategy for tumor treatment. Lonidamine (LND), as a hexokinase inhibitor, can block the energy supply and destroy mitochondria. However, poor water solubility and low mitochondrial selectivity limit its clinical application. To overcome these obstacles, we report redox-activated self-assembled carrier-free nanoparticles (Cy-TK-LND NPs) based on a small molecule prodrug, in which photosensitizer IR780 (Cy) which targets mitochondria is conjugated to LND via a sensitive thioketal (TK) linker. Intracellular oxidative stress induced by laser radiation leads to the responsive cleavage of Cy-TK-LND NPs, facilitating the release of free LND into mitochondria. Subsequently, LND damages mitochondria, triggering the apoptosis pathway. The results show the effective killing effect of Cy-TK-LND NPs on cancer cells in vitro and in vivo. The IC50 value of irradiated Cy-TK-LND NPs is 5-fold lower than that of free LND. Moreover, tumor tissue section staining results demonstrate that irradiated Cy-TK-LND NPs induce necrosis and apoptosis of tumor cells, upregulate cytochrome C and pro-apoptotic Bax, and downregulate anti-apoptotic Bcl-2. Generally, Cy-TK-LND NPs exhibit efficient mitochondria-targeted delivery to improve the medicinal availability of LND. Accordingly, such a carrier-free prodrug-based nanomedicine holds promise as an effective cancer chemotherapy strategy.
Collapse
Affiliation(s)
- Ting Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianfen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Ying Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Zhongke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
- Nano Science and Technology Institute, University of Science & Technology of China, Suzhou, 215123, P. R. China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, P. R. China
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.
| | - Lihua Zhou
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen, 518116, P. R. China.
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| |
Collapse
|
15
|
Cooper E, Choi PJ, Hwang K, Nam KM, Kim CY, Shaban T, Schweder P, Mee E, Correia J, Turner C, Faull RLM, Denny WA, Noguchi K, Dragunow M, Jose J, Park TIH. Elucidating the cellular uptake mechanisms of heptamethine cyanine dye analogues for their use as an anticancer drug-carrier molecule for the treatment of glioblastoma. Chem Biol Drug Des 2023; 101:696-716. [PMID: 36323652 DOI: 10.1111/cbdd.14171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
The development of chemotherapies for glioblastoma is hindered by their limited bioavailability and toxicity on normal brain function. To overcome these limitations, we investigated the structure-dependent activity of heptamethine cyanine dyes (HMCD), a group of tumour-specific and BBB permeable near-infrared fluorescent dyes, in both commercial (U87MG) and patient-derived GBM cell lines. HMCD analogues with strongly ionisable sulphonic acid groups were not taken up by patient-derived GBM cells, but were taken up by the U87MG cell line. HMCD uptake relies on a combination of transporter uptake through organic anion-transporting polypeptides (OATPs) and endocytosis into GBM cells. The uptake of HMCDs was not affected by p-glycoprotein efflux in GBM cells. Finally, we demonstrate structure-dependent cytotoxic activity at high concentrations (EC50 : 1-100 μM), likely due to mitochondrial damage-induced apoptosis. An in vivo orthotopic glioblastoma model highlights tumour-specific accumulation of our lead HMCD, MHI-148, for up to 7 days following a single intraperitoneal injection. These studies suggest that strongly ionisable groups like sulphonic acids hamper the cellular uptake of HMCDs in patient-derived GBM cell lines, highlighting cell line-specific differences in HMCD uptake. We envisage these findings will help in the design and structural modifications of HMCDs for drug-delivery applications for glioblastoma.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung M Nam
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Tina Shaban
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Patrick Schweder
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Jason Correia
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Katsuya Noguchi
- Dojindo Laboratories Co., Ltd, Techno-Research Park, Kumamoto, Japan
| | - Mike Dragunow
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Xu Y, Yu J, Hu J, Sun K, Lu W, Zeng F, Chen J, Liu M, Cai Z, He X, Wei W, Sun B. Tumor-Targeting Near-Infrared Dimeric Heptamethine Cyanine Photosensitizers With an Aromatic Diphenol Linker for Imaging-Guided Cancer Phototherapy. Adv Healthc Mater 2023:e2203080. [PMID: 36745881 DOI: 10.1002/adhm.202203080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/22/2023] [Indexed: 02/08/2023]
Abstract
Phototherapy is considered a promising alternative to conventional tumor treatments due to its noninvasive modality and effective therapeutic effect. However, designing a photosensitizer with satisfactory therapeutic effect and high security remains a considerable challenge. Herein, a series of dimeric heptamethine cyanine photosensitizers with an aromatic diphenol linker at the meso position is developed to improve the photothermal conversion efficiency (PCE). Thanks to the extended conjugate system and high steric hindrance, the screened 26NA-NIR and 44BP-NIR exhibit high PCE (≈35%), bright near-infrared (NIR) fluorescence, excellent reactive oxygen species (ROS) generation capability, and improved photostability. Furthermore, their outstanding performance on imaging-guided PDT-PTT synergistic therapy is demonstrated by in vivo and in vitro experiments. In conclusion, this study designs a series of dimeric heptamethine cyanine photosensitizers and presents two compounds for potential clinical applications. The strategy provides a new method to design NIR photosensitizers for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Yang Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Wenjun Lu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Fenglian Zeng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Wanying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| |
Collapse
|
17
|
Jo G, Kim EJ, Hyun H. Enhanced Tumor Uptake and Retention of Cyanine Dye-Albumin Complex for Tumor-Targeted Imaging and Phototherapy. Int J Mol Sci 2023; 24:ijms24010862. [PMID: 36614318 PMCID: PMC9821771 DOI: 10.3390/ijms24010862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Heptamethine cyanine dyes are widely used for in vivo near-infrared (NIR) fluorescence imaging and NIR laser-induced cancer phototherapy due to their good optical properties. Since most of heptamethine cyanine dyes available commercially are highly hydrophobic, they can usually be used for in vivo applications after formation of complexes with blood plasma proteins, especially serum albumin, to increase aqueous solubility. The complex formation between cyanine dyes and albumin improves the chemical stability and optical property of the hydrophobic cyanine dyes, which is the bottom of their practical use. In this study, the complexes between three different heptamethine cyanine dyes, namely clinically available indocyanine green (ICG), commercially available IR-786 and zwitterionic ZW800-Cl, and bovine serum albumin (BSA), were prepared to explore the effect of cyanine dyes on their tumor uptake and retention. Among the three complexes, IR-786©BSA exhibited increased tumor accumulation with prolonged tumor retention, compared to other complexes. Moreover, IR-786 bound to BSA played an important role in tumor growth suppression due to its cytotoxicity. To achieve complete tumor ablation, the tumor targeted by IR-786©BSA was further exposed to 808 nm laser irradiation for effective photothermal cancer treatment.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Eun Jeong Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2652
| |
Collapse
|
18
|
Crawford H, Dimitriadi M, Bassin J, Cook MT, Abelha TF, Calvo‐Castro J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry 2022; 28:e202202366. [PMID: 36121738 PMCID: PMC10092527 DOI: 10.1002/chem.202202366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/30/2022]
Abstract
The last decade has seen an increasingly large number of studies reporting on the development of novel small organic conjugated systems for mitochondrial imaging exploiting optical signal transduction pathways. Mitochondria are known to play a critical role in a number of key biological processes, including cellular metabolism. Importantly, irregularities on their working function are nowadays understood to be intimately linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. In this work we carry out an in-depth evaluation on the progress to date in the field to pave the way for the realization of superior alternatives to those currently existing. The manuscript is structured by commonly used chemical scaffolds and comprehensively covers key aspects factored in design strategies such as synthetic approaches as well as photophysical and biological characterization, to foster collaborative work among organic and physical chemists as well as cell biologists.
Collapse
Affiliation(s)
- Hannah Crawford
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Maria Dimitriadi
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Jatinder Bassin
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Michael T. Cook
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Thais Fedatto Abelha
- Department of Pharmacology, Toxicology and Therapeutic ChemistryFaculty of Pharmacy and Food ScienceUniversity of Barcelona08028BarcelonaSpain
- Institute of Nanoscience and NanotechnologyUniversity of Barcelona (IN2UB)08028BarcelonaSpain
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| |
Collapse
|
19
|
Zhao X, Wang S, Ma Y, Liu W, Zhao H, Di J, Fan Z, Yin Y, Zheng Y, Xi R, Meng M. Synergistic Release of Photothermal Molecules from Nanocarriers Induced by Light and Hyperthermia Benefits Efficient Anticancer Phototherapy. Anal Chem 2022; 94:17160-17168. [PMID: 36445943 DOI: 10.1021/acs.analchem.2c03586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recently, nanoformulations have been widely applied in the delivery of organic photothermal agents (OPTAs) for cancer therapy to prolong blood circulation or improve tumor-targeting capacity. However, the systematic evaluations of their effects on the photothermal behavior of OPTAs are limited, especially for different types of nanoparticle systems. Herein, we prepared two kinds of nanoparticles (BSA and PEG nanoparticles (NPs)) to load an OPTA, a cyanine photosensitizer (IR780-O-TPE), and investigated their photothermal response, organelle targeting, and in vivo therapeutic efficacy. Due to different assembly forms, the two NPs showed distinct morphological changes after exposure to laser or hyperthermia. Under laser irradiation at 808 nm, BSA NPs could release IR780-O-TPE more efficiently than PEG NPs. We speculate that this phenomenon is probably caused by dual-responsive release of IR780-O-TPE from BSA NPs against light and hyperthermia. Moreover, IR780-O-TPE/BSA NPs were highly mitochondria-targeting and therefore displayed significant inhibition of cell viability. In contrast, IR780-O-TPE/PEG NPs were "shell-core" nanostructures and more stable under laser stimulation. As a consequence, the mitochondria-targeting and anticancer photothermal therapy by IR780-O-TPE/PEG NPs was less obvious. This study revealed the significance of nanocarrier design for OPTA delivery and demonstrated that BSA NPs could release IR780-O-TPE more effectively for efficient photothermal therapy. We also believe that the dual-responsive release of OPTAs from NPs can provide an effective strategy to promote anticancer photothermal treatment.
Collapse
Affiliation(s)
- Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Shuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Wenting Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongjie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Jianhao Di
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Zhiwen Fan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
20
|
Tumor Targeting with Methotrexate-Conjugated Zwitterionic Near-Infrared Fluorophore for Precise Photothermal Therapy. Int J Mol Sci 2022; 23:ijms232214127. [PMID: 36430604 PMCID: PMC9697011 DOI: 10.3390/ijms232214127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Targeted tumor imaging can effectively enable image-guided surgery and precise cancer therapy. Finding the right combination of anticancer drugs and near-infrared (NIR) fluorophores is the key to targeted photothermal cancer treatment. In this study, a tumor-targetable NIR fluorophore conjugate with rapid body clearance was developed for accurate tumor imaging and effective photothermal therapy (PTT). The methotrexate (MTX) and zwitterionic NIR fluorophore conjugate (MTX-ZW) were prepared by conjugating a folate antagonist MTX with an aminated ZW800-1 analog to increase the tumor targetability for NIR laser-based PTT of cancer. The MTX, known as a poor tumor-selective drug, showed high tumor accumulation and rapid background clearance after conjugation with the highly water-soluble zwitterionic NIR fluorophore up to 4 h post-injection. The photothermal energy was generated from the MTX-ZW conjugate to induce necrotic cell death in the targeted tumor site under 808 nm laser irradiation. Compared with the previously reported MTX conjugates, the MTX-ZW conjugate can be a great candidate for targeted tumor imaging and fluorescence-guided photothermal cancer therapy. Therefore, these results provide a strategy for the design of drug-fluorophore conjugates and elaborate therapeutic platforms for cancer phototherapy.
Collapse
|
21
|
Arnau Del Valle C, Hirsch T, Marin M. Recent Advances in Near Infrared Upconverting Nanomaterials for Targeted Photodynamic Therapy of Cancer. Methods Appl Fluoresc 2022; 10. [PMID: 35447614 DOI: 10.1088/2050-6120/ac6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV-Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser (PS) drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (ie. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, Regensburg, 93040, GERMANY
| | - Maria Marin
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
22
|
Medeiros NG, Braga CA, Câmara VS, Duarte RC, Rodembusch FS. Near‐infrared fluorophores based on heptamethine cyanine dyes: from their synthesis and photophysical properties to recent optical sensing and bioimaging applications. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Natália G Medeiros
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Cláudia A. Braga
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Viktor S Câmara
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Rodrigo C Duarte
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Fabiano Severo Rodembusch
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Gonçalves 9500Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| |
Collapse
|
23
|
Molecular Tuning of IR-786 for Improved Tumor Imaging and Photothermal Therapy. Pharmaceutics 2022; 14:pharmaceutics14030676. [PMID: 35336050 PMCID: PMC8949487 DOI: 10.3390/pharmaceutics14030676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
A tumor-targeted near-infrared (NIR) fluorophore CA800Cl was developed based on commercially available IR-786 by modulating its physicochemical properties. IR-786, a hydrophobic cationic heptamethine cyanine fluorophore, was previously recognized as a mitochondria-targeting NIR agent with excellent optical properties. Owing to the poor tumor specificity of IR-786 itself, in vivo studies on tumor-targeted imaging have not yet been investigated. A chloro-cyclohexene ring and indolium side groups on the heptamethine chain are key structural features that improve tumor targetability, owing to better biodistribution and clearance. Thus, IR-786 should be designed to be more soluble in aqueous solutions so that it can preferentially accumulate in the tumor based on the structure-inherent targeting strategy. In this study, we developed a bifunctional NIR fluorophore CA800Cl by incorporating carboxylate moieties in the basic structure of IR-786. This improved its tumor targetability and water solubility, thereby enabling the use of CA800Cl for enhanced photothermal cancer therapy.
Collapse
|
24
|
Wangngae S, Chansaenpak K, Weeranantanapan O, Piyanuch P, Sumphanapai T, Yamabhai M, Noisa P, Lai RY, Kamkaew A. Effect of morpholine and charge distribution of cyanine dyes on cell internalization and cytotoxicity. Sci Rep 2022; 12:4173. [PMID: 35264603 PMCID: PMC8907291 DOI: 10.1038/s41598-022-07533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
To improve the potency of Heptamethine cyanines (Hcyanines) in cancer research, we designed and synthesized two novel Hcyanines based theranostic probes, IR794-Morph and IR794-Morph-Mpip, to enhance cancer cell internalization and targeting. In acidic conditions that resemble to tumour environment, both IR794 derivatives exhibited broad NIR absorption band (704‒794 nm) and fluorescence emission (798‒828 nm) that is suitable for deep seated tumour imaging. Moreover, in vitro study revealed that IR794-Morph-Mpip exhibited better cancer targetability towards various cancer cell lines under physiological and slightly acidic conditions compared to normal cells. IR794-Morph-Mpip was fast internalized into the cancer cells within the first 5 min and mostly localized in lysosomes and mitochondria. In addition, the internalized signal was brighter when the cells were in the hypoxic environment. Furthermore, cellular uptake mechanism of both IR794 dyes, investigated via flow cytometry, revealed that endocytosis through OATPs receptors and clathrin-mediated endocytosis were the main routes. Moreover, IR794-Morph-Mpip, displayed anti-cancer activity towards all tested cancer cell types with IC50 below 7 μM (at 6 h incubation), which is approximately three times lower than that of the normal cells. Therefore, increasing protonated cites in tumour environment of Hcyanines together with incorporating morpholine in the molecule can enhance structure-inherent targeting of these dyes.
Collapse
Affiliation(s)
- Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Oratai Weeranantanapan
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pornthip Piyanuch
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Thitima Sumphanapai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Montarop Yamabhai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
25
|
Cai Y, Liu C, Lei Z, Wang Z, Bian Y, He S, Zeng X. Novel lysosome-targeted fluorescent molecular rotors based on a cyanine-like modular system and their application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120404. [PMID: 34562859 DOI: 10.1016/j.saa.2021.120404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Two novel fluorescence molecular rotors DpIn and NaIn were designed and synthesized involving of indolium units linked with meta-diphenol or ortha-naphthalenediol moiety, respectively. They underwent intramolecular charge transfer to form a cyanine-like modular system at a physiological pH. In glycerol aqueous solutions, the probe DpIn exhibited NIR strong emission (3-fold) at ca. 700 nm, while the probe NaIn displayed a turn-on emission (8-fold) with a larger Stokes shift (⊿λ ≈ 97 nm). The HeLa cell imaging experiments indicated probe DpIn and NaIn both exhibited excellent selectivity for staining intracellular lysosomes instead of mitochondria. 1H NMR spectra revealed that more electrons were accumulated around benzene ring of indolium groups, which could be the evidence for its basic character leading to the lysosomes targeted staining. Furthermore, the probe NaIn proved to be an ideal lysosome-targeting tracer for monitor the changes of viscosity caused by stimuli in living cells.
Collapse
Affiliation(s)
- Yiping Cai
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoxia Lei
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiming Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yaye Bian
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
26
|
Zhao X, Zhao H, Wang S, Fan Z, Ma Y, Yin Y, Wang W, Xi R, Meng M. A Tumor-Targeting Near-Infrared Heptamethine Cyanine Photosensitizer with Twisted Molecular Structure for Enhanced Imaging-Guided Cancer Phototherapy. J Am Chem Soc 2021; 143:20828-20836. [PMID: 34860505 DOI: 10.1021/jacs.1c09155] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, cancer phototherapy has been extensively studied as noninvasive cancer treatment. To present efficient recognition toward cancer cells, most photosensitizers (PSs) are required to couple with tumor-targeted ligands. Interestingly, the heptamethine cyanine IR780 displays an intrinsic tumor-targeted feature even without modification. However, the photothermal efficacy and photostability of IR780 are not sufficient enough for clinical use. Herein, we involve a twisted structure of tetraphenylethene (TPE) between two molecules of IR780 to improve the photothermal conversion efficiency (PCE). The obtained molecule T780T shows strong near-infrared (NIR) fluorescence and improved PCE (38.5%) in the dispersed state. Also, the photothermal stability and ROS generation capability of T780T at the NIR range (808 nm) are both promoted. In the aqueous phase, the T780T was formulated into uniform nanoaggregates (∼200 nm) with extremely low fluorescence and PTT response, which would reduce in vivo imaging background and side effect of PTT response in normal tissues. After intravenous injection into tumor-bearing mice, the T780T nanoaggregates display high tumor accumulation and thus remarkably inhibit the tumor growth. Moreover, the enhanced photostability of the T780T allows for twice irradiation after one injection and leads to more significant tumor inhibition. In summary, our study presents a tumor-targeted small-molecule PS for efficient cancer therapy and brings a new design of heptamethine cyanine PS for potential clinical applications.
Collapse
Affiliation(s)
- Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongjie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Shuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Zhiwen Fan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yan Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Wei Wang
- Institute of Chemistry & Center for Pharmacy, University of Bergen, Bergen 5020, Norway
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
27
|
Ndaleh D, Smith C, Loku Yaddehige M, Shaik AK, Watkins DL, Hammer NI, Delcamp JH. Shortwave Infrared Absorptive and Emissive Pentamethine-Bridged Indolizine Cyanine Dyes. J Org Chem 2021; 86:15376-15386. [PMID: 34647452 DOI: 10.1021/acs.joc.1c01908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shortwave infrared (SWIR)-emitting small molecules are desirable for biological imaging applications. In this study, four novel pentamethine indolizine cyanine dyes were synthesized with N,N-dimethylaniline-based substituents on the indolizine periphery at varied substitution sites. The dyes are studied via computational chemistry and optical spectroscopy both in solution and when encapsulated. Dramatic spectral shifts in the absorption and emission spectrum wavelengths with added donor groups are observed. Significant absorption and emission with an emissive quantum yield as high as 3.6% in the SWIR region is possible through the addition of multiple donor groups per indolizine.
Collapse
Affiliation(s)
- David Ndaleh
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Cameron Smith
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Mahesh Loku Yaddehige
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Abdul Kalam Shaik
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Davita L Watkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
28
|
Kandinska M, Cheshmedzhieva D, Kostadinov A, Rusinov K, Rangelov M, Todorova N, Ilieva S, Ivanov D, Videva V, Lozanov V, Baluschev S, Landfester K, Vasilev A. Tricationic asymmetric monomeric monomethine cyanine dyes with chlorine and trifluoromethyl functionality – Fluorogenic nucleic acids probes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Tumor-Targeted ZW800-1 Analog for Enhanced Tumor Imaging and Photothermal Therapy. Pharmaceutics 2021; 13:pharmaceutics13101648. [PMID: 34683940 PMCID: PMC8537849 DOI: 10.3390/pharmaceutics13101648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
ZW800-1, a representative zwitterionic near-infrared (NIR) fluorophore, can minimize background tissue uptake owing to its balanced surface charges, and therefore, is widely used for improved NIR fluorescence imaging. As ZW800-1 has no tumor targetability, tumor imaging is highly dependent on the ability of the molecules conjugated to the ZW800-1. To enable tumor targeting using ZW800-1 without additional conjugation, we developed a tumor-targetable and renal-clearable ZW800-1 analog (ZW800-AM) based on the structural modification of ZW800-1. Specifically, an amine group on the center linker of the ZW800-1 indocyanine backbone was modified by replacing phenoxypropionic acid with tyramine linkage on the meso-chlorine atom. This modification improved the tumor targeting ability, which is known as the structure-inherent targeting strategy. More importantly, ZW800-AM not only showed sufficient tumor accumulation without nonspecific uptake but also produced a photothermal effect, killing tumor cells under 808 nm NIR laser irradiation. In addition, ZW800-AM exhibited rapid renal elimination from the body within 4 h of injection, similar to ZW800-1. Overall, the discovery of ZW800-AM as a bifunctional phototherapeutic agent may provide an ideal alternative for tumor-targeted imaging and phototherapy.
Collapse
|
30
|
Park MH, Jo G, Lee BY, Kim EJ, Hyun H. Rapid Tumor Targeting of Renal-Clearable ZW800-1 Conjugate for Efficient Photothermal Cancer Therapy. Biomedicines 2021; 9:biomedicines9091151. [PMID: 34572335 PMCID: PMC8470137 DOI: 10.3390/biomedicines9091151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
The combination of near-infrared (NIR) fluorophores and photothermal therapy (PTT) provides a new opportunity for safe and effective cancer treatment. However, the precise molecular design of functional NIR fluorophores with desired properties, such as high tumor targetability and low nonspecific uptake, remains challenging. In this study, a renal-clearable NIR fluorophore conjugate with high tumor targetability was developed for efficient photothermal cancer therapy. The isoniazid (INH)–ZW800-1 conjugate (INH–ZW) was synthesized by conjugating an antibiotic drug, INH, with a well-known zwitterionic NIR fluorophore, ZW800-1, to improve in vivo performance and fluorescence-guided cancer phototherapy. INH–ZW not only showed rapid tumor accumulation without nonspecific tissue/organ uptake within 1 h after the injection but also generated thermal energy to induce cancer cell death under NIR laser irradiation. Compared with previously reported ZW800-1 conjugates, INH–ZW preserved the ideal biodistribution of ZW800-1 and facilitated improved tumor targeting and PTT. Together, these results demonstrate that the INH–ZW conjugate has great potential to serve as an effective PTT agent capable of rapid tumor targeting and high renal clearance, with excellent photothermal efficacy.
Collapse
Affiliation(s)
- Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Korea; (M.H.P.); (E.J.K.)
| | - Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (G.J.); (B.Y.L.)
| | - Bo Young Lee
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (G.J.); (B.Y.L.)
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Eun Jeong Kim
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Korea; (M.H.P.); (E.J.K.)
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (G.J.); (B.Y.L.)
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
- Correspondence: ; Tel.: +82-613-792-652
| |
Collapse
|
31
|
Augustine R, Uthaman S, Kalva N, Eom KH, Huh KM, Pillarisetti S, Park IK, Kim I. Two-tailed tadpole-shaped synthetic polymer polypeptide bioconjugate nanomicelles for enhanced chemo-photothermal therapy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Hu D, Pan M, Yang Y, Sun A, Chen Y, Yuan L, Huang K, Qu Y, He C, Wei Q, Qian Z. Trimodal Sono/Photoinduced Focal Therapy for Localized Prostate Cancer: Single‐Drug‐Based Nanosensitizer under Dual‐Activation. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202104473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- DanRong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Meng Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Yun Yang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Ao Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Yu Chen
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - LiPing Yuan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - KangKang Huang
- Department of Orthopedics West China Hospital Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Ying Qu
- Department of Hematology and Research Laboratory of Hematology State Key Laboratory of Biotherapy West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - ChengQi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - ZhiYong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
33
|
Cooper E, Choi PJ, Denny WA, Jose J, Dragunow M, Park TIH. The Use of Heptamethine Cyanine Dyes as Drug-Conjugate Systems in the Treatment of Primary and Metastatic Brain Tumors. Front Oncol 2021; 11:654921. [PMID: 34141613 PMCID: PMC8204086 DOI: 10.3389/fonc.2021.654921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Effective cancer therapeutics for brain tumors must be able to cross the blood-brain barrier (BBB) to reach the tumor in adequate quantities and overcome the resistance conferred by the local tumor microenvironment. Clinically approved chemotherapeutic agents have been investigated for brain neoplasms, but despite their effectiveness in peripheral cancers, failed to show therapeutic success in brain tumors. This is largely due to their poor bioavailability and specificity towards brain tumors. A targeted delivery system might improve the efficacy of the candidate compounds by increasing the retention time in the tumor tissue, and minimizing the numerous side effects associated with the non-specific distribution of the chemotherapy agent. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence (NIRF) compounds that have recently emerged as promising agents for drug delivery. Initially explored for their use in imaging and monitoring neoplasms, their tumor-targeting properties have recently been investigated for their use as drug carrier systems. This review will explore the recent developments in the tumour-targeting properties of a specific group of NIRF cyanine dyes and the preclinical evidence for their potential as drug-delivery systems in the treatment of primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I.-H. Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Wang Y, Tang B, Long L, Luo P, Xiang W, Li X, Wang H, Jiang Q, Tan X, Luo S, Li H, Wang Z, Chen Z, Leng Y, Jiang Z, Wang Y, Ma L, Wang R, Zeng C, Liu Z, Wang Y, Miao H, Shi C. Improvement of obesity-associated disorders by a small-molecule drug targeting mitochondria of adipose tissue macrophages. Nat Commun 2021; 12:102. [PMID: 33397994 PMCID: PMC7782823 DOI: 10.1038/s41467-020-20315-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Pro-inflammatory activation of adipose tissue macrophages (ATMs) is causally linked to obesity and obesity-associated disorders. A number of studies have demonstrated the crucial role of mitochondrial metabolism in macrophage activation. However, there is a lack of pharmaceutical agents to target the mitochondrial metabolism of ATMs for the treatment of obesity-related diseases. Here, we characterize a near-infrared fluorophore (IR-61) that preferentially accumulates in the mitochondria of ATMs and has a therapeutic effect on diet-induced obesity as well as obesity-associated insulin resistance and fatty liver. IR-61 inhibits the classical activation of ATMs by increasing mitochondrial complex levels and oxidative phosphorylation via the ROS/Akt/Acly pathway. Taken together, our findings indicate that specific enhancement of ATMs oxidative phosphorylation improves chronic inflammation and obesity-related disorders. IR-61 might be an anti-inflammatory agent useful for the treatment of obesity-related diseases by targeting the mitochondria of ATMs. Adipose tissue macrophages are central to controlling inflammation in the context of obesity. Here the authors present a new infrared dye (IR-61) that accumulates in the mitochondria of these cells resulting in anti-inflammatory effects that counter obesity-associated pathology in mice.
Collapse
Affiliation(s)
- Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Binlin Tang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.,Oncology Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Wei Xiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xueru Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Huilan Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.,Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qingzhi Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.,Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shenglin Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Huijuan Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yu Leng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Rui Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zujuan Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
35
|
Capistrano G, Sousa-Junior AA, Silva RA, Mello-Andrade F, Cintra ER, Santos S, Nunes AD, Lima RM, Zufelato N, Oliveira AS, Pereira M, Castro CH, Lima EM, Cardoso CG, Silveira-Lacerda E, Mendanha SA, Bakuzis AF. IR-780-Albumin-Based Nanocarriers Promote Tumor Regression Not Only from Phototherapy but Also by a Nonirradiation Mechanism. ACS Biomater Sci Eng 2020; 6:4523-4538. [DOI: 10.1021/acsbiomaterials.0c00164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| | | | - Roosevelt A. Silva
- Nucleo Colaborativo de BioSistemas, Universidade Federal de Goiás, 75804-020 Jataí−GO, Brasil
| | - Francyelli Mello-Andrade
- Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, 74055-110 Goiânia−GO, Brasil
| | - Emilio R. Cintra
- Faculdade de Farmácia, Universidade Federal de Goiás, 74605-220 Goiânia−GO, Brasil
| | - Sônia Santos
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Allancer D. Nunes
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Raisa M. Lima
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Nicholas Zufelato
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| | - André S. Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Maristela Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Carlos H. Castro
- Instituto de Ciências Biológicas, Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Eliana M. Lima
- Faculdade de Farmácia, Universidade Federal de Goiás, 74605-220 Goiânia−GO, Brasil
| | - Clever G. Cardoso
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | | | | | - Andris F. Bakuzis
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| |
Collapse
|
36
|
Abelha TF, Morris G, Lima SM, Andrade LHC, McLean AJ, Alexander C, Calvo‐Castro J, McHugh CJ. Development of a Neutral Diketopyrrolopyrrole Phosphine Oxide for the Selective Bioimaging of Mitochondria at the Nanomolar Level. Chemistry 2020; 26:3173-3180. [DOI: 10.1002/chem.201905634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Thais F. Abelha
- School of PharmacyThe University of Nottingham University Park NG72RD Nottingham UK
| | - Graeme Morris
- School of Computing, Engineering and Physical SciencesUniversity of the West of Scotland PA12BE Paisley UK
| | - Sandro M. Lima
- Grupo de Espectroscopia Óptica e FototérmicaUniversidade Estadual de Mato Grosso do Sul CP 351 79804-970 Dourados MS Brazil
| | - Luis H. C. Andrade
- Grupo de Espectroscopia Óptica e FototérmicaUniversidade Estadual de Mato Grosso do Sul CP 351 79804-970 Dourados MS Brazil
| | - Andrew J. McLean
- School of Computing, Engineering and Physical SciencesUniversity of the West of Scotland PA12BE Paisley UK
| | - Cameron Alexander
- School of PharmacyThe University of Nottingham University Park NG72RD Nottingham UK
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of Hertfordshire AL109AB Hatfield UK
| | - Callum J. McHugh
- School of Computing, Engineering and Physical SciencesUniversity of the West of Scotland PA12BE Paisley UK
| |
Collapse
|
37
|
Asgher M, Qamar SA, Sadaf M, Iqbal HMN. Multifunctional materials conjugated with near-infrared fluorescent organic molecules and their targeted cancer bioimaging potentialities. Biomed Phys Eng Express 2020; 6:012003. [PMID: 33438589 DOI: 10.1088/2057-1976/ab6e1d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Near-infrared fluorescent dyes based on small organic molecules are believed to have a great influence on cancer diagnosis at large and targeted cancer cell bioimaging, in particular. NIR dyes-based organic molecules have notable characteristics features, such as high tissue penetration and low tissue autofluorescence in the NIR spectral region. Cancer targeted bioimaging relies significantly on the synthesis of highly specific molecular probes with excellent stability. Recently, NIR dyes have emerged as unique fluorescent probes for cancer bioimaging. These current advancements have overcome many limitations of conventional NIR probes e.g., poor photostability and hydrophilicity, insufficient stability and low quantum yield. The further potential lies in NIR dyes or NIR dyes-coated nanocarriers conjugated with cancer-specific ligand (e.g., peptides, antibodies, proteins or other small molecules). Multifunctional NIR dyes have synthesized, which efficiently accumulate in cancer cells without requiring chemical conjugation and also these dyes have presented novel photophysical and pharmaceutical properties for in vivo imaging. This review highlights the recently developed NIR dyes with novel applications in cancer bioimaging. We believe that these novel fluorophores will enhance our understanding of cancer imaging and pave a new road in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Muhammad Asgher
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | | | | | | |
Collapse
|
38
|
Deng L, Sheng D, Liu M, Yang L, Ran H, Li P, Cai X, Sun Y, Wang Z. A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors. Biomater Sci 2020; 8:858-870. [PMID: 31808470 DOI: 10.1039/c9bm01126a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synergistic photodynamic therapy of mitochondria-targeting and O2 self-supply can be achieved in a sample near-infrared laser and H2O2 activated bio-nanoreactor.
Collapse
Affiliation(s)
- Liming Deng
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Danli Sheng
- Department of Ultrasound
- Fudan University Shanghai Cancer Center
- Shanghai
- P. R. China
| | - Mingzhu Liu
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Lu Yang
- Department of Breast and Thyroid Surgery
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing
- P. R. China
| | - Haitao Ran
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Pan Li
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- P. R. China
| | - Yang Sun
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| | - Zhigang Wang
- Institute of Ultrasound Imaging & Department of Ultrasound
- The Second Affiliated Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Chongqing
- P. R. China
| |
Collapse
|
39
|
Ma X, Zhang C, Feng L, Liu SH, Tan Y, Yin J. Construction and bioimaging application of novel indole heptamethine cyanines containing functionalized tetrahydropyridine rings. J Mater Chem B 2020; 8:9906-9912. [DOI: 10.1039/d0tb01890b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IR780 as a commercially available dye with near-infrared emission has been extensively applied in fluorescent probes and bioimaging.
Collapse
Affiliation(s)
- Xiaoxie Ma
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Lan Feng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
| |
Collapse
|
40
|
Tabero A, García-Garrido F, Prieto-Castañeda A, Palao E, Agarrabeitia AR, García-Moreno I, Villanueva A, de la Moya S, Ortiz MJ. BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis. Chem Commun (Camb) 2019; 56:940-943. [PMID: 31850455 DOI: 10.1039/c9cc09397d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endowing BODIPY PDT agents with the ability to probe lipid droplets is demonstrated to boost their phototoxicity, allowing the efficient use of highly fluorescent dyes (poor ROS sensitizers) as phototoxic agents. Conversely, this fact opens the way to the development of highly bright ROS photosensitizers for performing photodynamic theragnosis (fluorescence bioimaging and photodynamic therapy) from a single simple agent. On the other hand, the noticeable capability of some of the reported dyes to probe lipid droplets in different cell lines under different conditions reveals their use as privileged probes for advancing the study of interesting lipid droplets by fluorescence microscopy.
Collapse
Affiliation(s)
- Andrea Tabero
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Fernando García-Garrido
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Eduardo Palao
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Antonia R Agarrabeitia
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Inmaculada García-Moreno
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química-Física Rocasolano, Centro Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - María J Ortiz
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| |
Collapse
|
41
|
Zhang C, Liu J, Guo H, Wang W, Xu M, Tan Y, Huang T, Cao Z, Shuai X, Xie X. Theranostic Nanomedicine Carrying L-Menthol and Near-Infrared Dye for Multimodal Imaging-Guided Photothermal Therapy of Cancer. Adv Healthc Mater 2019; 8:e1900409. [PMID: 31148393 DOI: 10.1002/adhm.201900409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/05/2019] [Indexed: 12/20/2022]
Abstract
Photothermal therapy (PTT) as an emerging technique for cancer treatment has drawn great attention owing to its minimally invasive nature. However, it is difficult to achieve a complete tumor regression due to the heterogeneous heat distribution over the tumor. Application of photothermal conversion agents may enhance PTT efficiency, and a multifunctional imaging may provide guidance for the implementation of PTT. Herein, an L-menthol/IR-780 loaded liposome (MIL) is prepared to achieve NIR-triggered cavitation for enhancing photothermal ablation. The synthesized MIL possesses outstanding colloidal stability and photoacoustic/near infrared fluorescence/ultrasound (PA/NIRF/US) imaging contrast to offer multimodal imaging-guided photothermal therapy of cancer. Upon irradiation, the IR-780 acts as the photoabsorber to convert NIR light into heat energy. More importantly, the produced hyperthermia can not only induce ablation of tumor cells but also trigger vaporization and bubbling of encapsulated L-menthol (menthol). Consequently, the generated menthol bubbles obviously enhance the US imaging signal and promote photothermal ablation of the tumor.
Collapse
Affiliation(s)
- Chunyang Zhang
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Jie Liu
- School of Biomedical EngineeringSun Yat‐Sen University Guangzhou Guangdong 510006 China
| | - Huanling Guo
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Wei Wang
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Ming Xu
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Yang Tan
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Tongyi Huang
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| | - Zhong Cao
- School of Biomedical EngineeringSun Yat‐Sen University Guangzhou Guangdong 510006 China
| | - Xintao Shuai
- PCFM Lab of Ministry of EducationSchool of Chemistry and Chemical EngineeringSun Yat‐Sen University Guangzhou Guangdong 510275 China
| | - Xiaoyan Xie
- Department of Medical UltrasoundInstitute of Diagnostic and Interventional UltrasoundFirst Affiliated HospitalSun Yat‐Sen University Guangzhou Guangdong 510080 China
| |
Collapse
|
42
|
Luo P, Tan X, Luo S, Wang Z, Long L, Wang Y, Liao F, Chen L, Zhang C, He J, Huang Y, Liu Z, Gan Y, Chen Z, Wang Y, Liu Y, Wang Y, Shi C. An NIR‐Fluorophore‐Based Inhibitor of SOD1 Induces Apoptosis by Targeting Transcription Cofactor PC4. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Luo
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Xu Tan
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Shenglin Luo
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Ziwen Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Lei Long
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yawei Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Fengying Liao
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Long Chen
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Chi Zhang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Jintao He
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yinghui Huang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Zujuan Liu
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yibo Gan
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Zelin Chen
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yang Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yunsheng Liu
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yu Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| |
Collapse
|