1
|
Shaban M. Fabrication of ZnO/ZnAl 2O 4/Au Nanoarrays through DC Electrodeposition Utilizing Nanoporous Anodic Alumina Membranes for Environmental Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2667. [PMID: 37836308 PMCID: PMC10574107 DOI: 10.3390/nano13192667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, anodic aluminum oxide membranes (AAOMs) and Au-coated AAOMs (AAOM/Au) with pore diameters of 55 nm and inter-pore spacing of 100 nm are used to develop ZnO/AAOM and ZnO/ZnAl2O4/Au nanoarrays of different morphologies. The effects of the electrodeposition current, time, barrier layer, and Au coating on the morphology of the resultant nanostructures were investigated using field emission scanning electron microscopy. Energy dispersive X-ray and X-ray diffraction were used to analyze the structural parameters and elemental composition of the ZnO/ZnAl2O4/Au nanoarray, and the Kirkendall effect was confirmed. The developed ZnO/ZnAl2O4/Au electrode was applied to remove organic dyes from aqueous solutions, including methylene blue (MB) and methyl orange (MO). Using a 3 cm2 ZnO/ZnAl2O4/Au sample, the 100% dye removal for 20 ppm MB and MO dyes at pH 7 and 25 °C was achieved after approximately 50 and 180 min, respectively. According to the kinetics analysis, the pseudo-second-order model controls the dye adsorption onto the sample surface. AAOM/Au and ZnO/ZnAl2O4/Au nanoarrays are also used as pH sensor electrodes. The sensing capability of AAOM/Au showed Nernstian behavior with a sensitivity of 65.1 mV/pH (R2 = 0.99) in a wide pH range of 2-9 and a detection limit of pH 12.6, whereas the ZnO/ZnAl2O4/Au electrode showed a slope of 40.1 ± 1.6 mV/pH (R2 = 0.996) in a pH range of 2-6. The electrode's behavior was more consistent with non-Nernstian behavior over the whole pH range under investigation. The sensitivity equation was given by V(mV) = 482.6 + 372.6 e-0.2095 pH at 25 °C with R2 = 1.0, which could be explained in terms of changes in the surface charge during protonation and deprotonation.
Collapse
Affiliation(s)
- Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| |
Collapse
|
2
|
Rabia M, Elsayed AM, Abdallah Alnuwaiser M, Abdelazeez AAA. Ag 2S-Ag 2O-Ag/poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two-Electrode Symmetric Supercapacitor: Tested in Acidic and Basic Mediums. MICROMACHINES 2023; 14:1423. [PMID: 37512734 PMCID: PMC10383204 DOI: 10.3390/mi14071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
A Ag2S-Ag2O-Ag/poly-2-aminobenzene-1-thiol (P2ABT) nanocomposite was prepared using the photopolymerization reaction using AgNO3 as an oxidant. The size of the nanocomposite was about 40 nm, in which the morphology was confirmed using TEM and SEM analyses. The functional groups of Ag2S-Ag2O-Ag/P2ABT were confirmed using FTIR; also, XRD confirmed the inorganic Ag2S, Ag, and Ag2O formation. This nanocomposite has great performance in supercapacitor applications, with it tested in acidic (1.0 M HCl) and basic mediums (1.0 M NaOH). This pseudo-capacitor has great performance that appeared through the charge time in an acid medium in comparison to the basic medium with values of 118 s and 103 s, correspondingly. The cyclic voltammetry (CV) analysis further confirmed the excellent performance of the supercapacitor material, as indicated by the large area under the cyclic curve. The specific capacitance (CS) and energy density (E) values (at 0.3 A/g) were 92.5 and 44.4 F/g and 5.0 and 2.52 W·h·Kg-1 in the acidic and basic mediums, correspondingly. The charge transfer was studied through a Nyquist plot, and the produced Rs values were 4.9 and 6.2 Ω, respectively. Building on these findings, our objective is to make a significant contribution to the progress of supercapacitor technology through a prototype design soon.
Collapse
Affiliation(s)
- Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Asmaa M Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
3
|
Photoelectrochemical Conversion of Sewage Water into H2 Fuel over the CuFeO2/CuO/Cu Composite Electrode. Catalysts 2023. [DOI: 10.3390/catal13030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
This study describes the synthesis of delafossite, CuFeO2, as a primary photocatalytic material for hydrogen generation. A photoelectrode, CuFeO2/CuO/Cu, was prepared by combusting a Cu foil dipped in FeCl3 in ambient air. This photoelectrode showed excellent optical behavior for the hydrogen generation reaction from sewage water, producing 90 µmol/h of H2. The chemical structure was confirmed through XRD and XPS analyses, and the crystalline rhombohedral shape of CuFeO2 was confirmed using SEM and TEM analyses. With a bandgap of 1.35 ev, the prepared material displayed excellent optical properties. Electrochemical measurements for H2 gas generation were carried out using the CuFeO2/CuO/Cu photoelectrode, comparing the effect of light and dark and monochromatic wavelength light. The electrode exhibited significant enhancement in light compared to dark, with current density (Jph) values of −0.83 and −0.1 mA·cm−2, respectively. The monochromatic light also had a noticeable effect, with the Jph value increasing from −0.45 to −0.79 mA·cm−2 as the wavelength increased from 640 to 390 nm. This system is cheap and durable, making it a promising solution for hydrogen gas fuel generation in the industry.
Collapse
|
4
|
Atta A, Negm H, Abdeltwab E, Rabia M, Abdelhamied MM. Facile fabrication of polypyrrole/
NiO
x
core‐shell nanocomposites for hydrogen production from wastewater. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A. Atta
- Physics Department, College of Science Jouf University Sakaka Saudi Arabia
| | - H. Negm
- Physics Department, College of Science Jouf University Sakaka Saudi Arabia
| | - E. Abdeltwab
- Physics Department, College of Science Jouf University Sakaka Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt
| | - M. M. Abdelhamied
- Charged Particles Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| |
Collapse
|
5
|
Rabia M, Essam D, Alkallas FH, Shaban M, Elaissi S, Ben Gouider Trabelsi A. Flower-Shaped CoS-Co 2O 3/G-C3N4 Nanocomposite for Two-Symmetric-Electrodes Supercapacitor of High Capacitance Efficiency Examined in Basic and Acidic Mediums. MICROMACHINES 2022; 13:2234. [PMID: 36557533 PMCID: PMC9787701 DOI: 10.3390/mi13122234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Graphitic carbon nitride (G-C3N4) was synthesized through the direct combustion of urea in the air. The CoS-Co2O3/G-C3N4 composite was synthesized via the hydrothermal method of G-C3N4 using cobalt salts. The morphological and chemical structures were determined through XRD, XPS, SEM, and TEM. XRD and XPS analyses confirmed the chemical structure, function groups, and elements percentage of the prepared nanocomposite. SEM measurements illustrated the formation of G-C3N4 sheets, as well as the flower shape of the CoS-Co2O3/G-C3N4 composite, evidenced through the formation of nano appendages over G-C3N4 sheets. TEM confirmed the 2D nanosheets of G-C3N4 with an average width and length of 80 nm and 170 nm, respectively. Two symmetric electrodes for the supercapacitor from the CoS-Co2O3/G-C3N4 composite. Electrochemical measurements were carried out to determine the charge/discharge, cyclic voltammetry, stability, and impedance of the prepared supercapacitor. The measurements were carried out under acid (0.5 M HCL) and basic (6.0 M NaOH) mediums. The charge and discharge lifetime values in the acid and base medium were 85 and 456 s, respectively. The cyclic voltammetry behavior was rectangular in a base medium for the pseudocapacitance feature. The supercapacitor had 100% stability retention up to 600 cycles; then, the stability decreased to 98.5% after 1000 cycles. The supercapacitor displayed a specific capacitance (CS) of 361 and 92 F/g, and an energy density equal to 28.7 and 30.2 W h kg-1 in the basic and acidic mediums, respectively. Our findings demonstrate the capabilities of supercapacitors to become an alternative solution to batteries, owing to their easy and low-cost manufacturing technique.
Collapse
Affiliation(s)
- Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Doaa Essam
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Samira Elaissi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
6
|
Trabelsi ABG, Essam D, H. Alkallas F, M. Ahmed A, Rabia M. Petal-like NiS-NiO/G-C3N4 Nanocomposite for High-Performance Symmetric Supercapacitor. MICROMACHINES 2022; 13:2134. [PMID: 36557433 PMCID: PMC9784817 DOI: 10.3390/mi13122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Graphitic carbon nitride (G-C3N4) and NiS-NiO/G-C3N4 nanocomposite have been synthesized via combustion and hydrothermal techniques, respectively. The chemical and morphological properties of these materials were confirmed using different analytical methods. SEM confirms the formation of G-C3N4 sheets containing additional petal-like shapes of NiS-NiO nanoparticles. The electrochemical testing of NiS-NiO/G-C3N4 symmetric supercapacitors is carried out from 0.6 M HCl electrolyte. Such testing includes charge/discharge, cyclic voltammetry, impedance, and supercapacitor stability. The charge/discharge time reaches 790 s at 0.3 A/g, while the cyclic voltammetry curve forms under a high surface area. The produced specific capacitance (CS) and energy density values are 766 F/g and 23.55 W.h.kg-1, correspondingly.
Collapse
Affiliation(s)
- Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Doaa Essam
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ashour M. Ahmed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohamed Rabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
7
|
Altowyan AS, Shaban M, Gamel A, Gamal A, Ali M, Rabia M. High-Performance pH Sensor Electrodes Based on a Hexagonal Pt Nanoparticle Array-Coated Nanoporous Alumina Membrane. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6515. [PMID: 36233854 PMCID: PMC9572877 DOI: 10.3390/ma15196515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Porous anodic alumina membranes coated with Pt nanoparticles (PAAM/Pt) have been employed as pH sensor electrodes for H+ ion detection. The PAAM was designed using a two-step anodization process. Pt nanoparticles were then sputtered onto the membrane at different deposition times. The membrane's morphological, chemical, and optical characteristics were carefully assessed following the fabrication stage using a variety of analytical techniques. The potential of the PAAM/Pt sensor electrode was investigated by measuring the potential using a simple potentiometric method. The effects of depositing Pt nanoparticles for 3-7 min on sensor electrode sensitivity were examined. The optimal potentiometric Nernstian response slope for the PAAM/Pt sensor electrode with 5 min Pt sputter coating is 56.31 mV/decade in the pH range of 3.0 to 10 at 293 K. Additionally, the PAAM/Pt sensor electrode's stability and selectivity in various ions solutions were examined. The sensor electrode had a lifetime of more than six weeks and was kept in a normal air environment.
Collapse
Affiliation(s)
- Abeer S. Altowyan
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Physics Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia
| | - Asmaa Gamel
- Nanophotonics and Applications (NPA) Lab, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed Gamal
- Nanophotonics and Applications (NPA) Lab, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mona Ali
- Nanophotonics and Applications (NPA) Lab, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Rabia
- Nanophotonics and Applications (NPA) Lab, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
8
|
ATO/Polyaniline/PbS Nanocomposite as Highly Efficient Photoelectrode for Hydrogen Production from Wastewater with Theoretical Study for the Water Splitting. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5628032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyaniline-assisted deposition of PbS is carried out on antimony tin oxide (ATO) glass for ATO/PANI/PbS composite formation. The deposition of PbS was carried out inside and outside the polymer chains using the ionic adsorption deposition process. Various analyses were conducted to confirm the chemical structure and morphological, optical, and electrical properties of the resulting composite. TEM and SEM analyses demonstrated the spherical shape of PbS particles inside and outside the PANI network with more dark or white color, respectively. Moreover, the ImageJ program confirmed the composite formation. The XRD characterization showed the shifts in the PANI peaks after the composite formation with the appearance of a new additional peak related to PbS nanoparticles. The optical analyses were massively enhanced after the composite formation with more broadening in the Vis region at 630 nm, in which there was more enhancement in the bandgap that reached 1.5 eV. The electrode application in the H2 generation process was carried out from wastewater (sewage water, third treatment) without any additional sacrificing agent. The electrode responded well to light, where the current density (
) changed from 10-6 to 0.13 mA.cm-2 under dark and light, respectively. The electrode had high reproducibility and stability. The numbers of generated H2 moles were 0.1 mmol/cm2.h. The produced
and
were 7.3 kJ/mol and 273.4 J/mol.K, respectively. Finally, the mechanism explains the H2 generation reaction using three-electrode cell.
Collapse
|
9
|
Poly-3-Methyl Aniline-Assisted Spherical PbS Quantum Dots through the Ionic Adsorption Deposition Method as a Novel and Highly Efficient Photodetector in UV, Vis, and NIR Regions. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7693472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study describes the preparation and characterization of glass/poly-3-methyl aniline (P3MA)/PbS quantum dot (QD) optoelectronic photodetector to detect and sense the light in broad spectral regions of UV, Vis, and NIR. This work is carried out to solve the drawbacks of other studs that prepare detectors in just one or two optical regions. Previous studies have used high-priced techniques. The deposition of P3MA on the glass surface was carried out by in situ oxidation process. Then, this polymer film was used to assist the deposition of PbS-QD particles through the ionic adsorption deposition method. The latter was performed using four different concentrations of Pb(NO3)2 solution (0.01, 0.03, 0.05, and 0.07 M) to form four P3MA/PbS composites: I, II, III, and IV, respectively. The chemical structure, morphologies, and electrical and optical properties of these composites were determined using different analytical tools. The SEM confirmed the formation of spherical QD particles of PbS on the P3MA surface. The TEM analysis showed that the composite has an average size of 5 nm, with the interatomic distances of 0.4 nm. Furthermore, the optical band gap values were 1.53, 1.52, 1.50, and 1.51 eV, respectively. The optoelectronic device could detect and sense light from 390 to 636 nm under various optical wavelengths. The produced current density (
) values decreased from 0.029 mA.cm-2 at 390 nm to 0.022 mA.cm-2 at 500 nm and then increased until 0.024 mA.cm-2 at 636 nm. The light sensing was determined through the photoresponsivity (
) and detectivity (
) parameters, in which the photodetector has
and
values of 0.29 mA.cm-2 and
Jones, respectively. Finally, a simple mechanism was proposed to explain the light sensing through the prepared optoelectronic device. Soon, our team works on the industrial applications of this optoelectronic device in the industry field related to the great optoelectronic device technical properties and its low cost and easy preparation.
Collapse
|
10
|
Gamal A, Shaban M, BinSabt M, Moussa M, Ahmed AM, Rabia M, Hamdy H. Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:817. [PMID: 35269305 PMCID: PMC8912390 DOI: 10.3390/nano12050817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
In this work, a polyaniline/lead sulfide (PANI/PbS) nanocomposite was prepared by combining the in situ oxidation polymerization method and the surface adsorption process. This nanocomposite was applied as a supercapacitor electrode. The crystal structure, nanomorphology, and optical analysis of PANI and PANI/PbS were investigated. The electrochemical performance of the designed PANI/PbS electrode-based supercapacitor was tested by using cyclic voltammetry (CV), chronopotentiometry (CP), and AC impedance techniques in HCl and Na2SO4 electrolytes. The average crystallite size of the PANI/PbS nanocomposite is about 43 nm. PANI/PbS possesses an agglomerated network related to PANI with additional spherical shapes from PbS nanoparticles. After the PANI/PbS nanocomposite formation, there are enhancements in their absorption intensities. At a current density of 0.4 A g-1, the specific capacitance of PANI/PbS in Na2SO4 and HCl was found to be 303 and 625 F g-1, respectively. In HCl (625 F g-1 and 1500 mF cm-2), the gravimetric and areal capacitances of the PANI/PbS electrode are nearly double those of the Na2SO4 electrolyte. Also, the average specific energy and specific power density values for the PANI/PbS electrode in HCl are 4.168 Wh kg-1 and 196.03 W kg-1, respectively. After 5000 cycles, the capacitance loses only 4.5% of its initial value. The results refer to the high stability and good performance of the designed PANI/PbS as a supercapacitor electrode.
Collapse
Affiliation(s)
- Ahmed Gamal
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
| | - Mohamed Shaban
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Al-Madinah Almonawara 42351, Saudi Arabia
| | - Mohammad BinSabt
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Mahmoud Moussa
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ashour M. Ahmed
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
| | - Mohamed Rabia
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hany Hamdy
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
| |
Collapse
|
11
|
Hadia NMA, Abdelazeez AAA, Alzaid M, Shaban M, Mohamed SH, Hoex B, Hajjiah A, Rabia M. Converting Sewage Water into H 2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1489. [PMID: 35208029 PMCID: PMC8879772 DOI: 10.3390/ma15041489] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 °C for 1 h. The Cu/CuO surface consists of island-like structures, with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further, the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm-2 upon raising the light power density from 50 to 100 mW·cm-2. Moreover, the enthalpy (ΔH*) and entropy (ΔS*) values of Cu/CuO electrode were determined as 9.519 KJ mol-1 and 180.4 JK-1·mol-1, respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
Collapse
Affiliation(s)
- N. M. A. Hadia
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
- Basic Sciences Research Unit, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ahmed Adel A. Abdelazeez
- Nanoscale Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
- State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Meshal Alzaid
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.S.); (M.R.)
- Department of Physics, Faculty of Science, Islamic University of Madinah, Prince Naifbin Abdulaziz, Al Jamiah, Madinah 42351, Saudi Arabia;
| | - S. H. Mohamed
- Department of Physics, Faculty of Science, Islamic University of Madinah, Prince Naifbin Abdulaziz, Al Jamiah, Madinah 42351, Saudi Arabia;
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Bram Hoex
- School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ali Hajjiah
- Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University, Safat 13113, Kuwait
| | - Mohamed Rabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.S.); (M.R.)
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
12
|
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water. Polymers (Basel) 2022; 14:polym14040768. [PMID: 35215683 PMCID: PMC8878796 DOI: 10.3390/polym14040768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So, this study has a dual benefit for hydrogen generation; at the same time, it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then, the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min, respectively. The complete analyses confirm the chemical structure, such as XRD, FTIR, HNMR, SEM, and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm), and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte, respectively. Moreover, all the thermodynamic parameters, such as activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*), were calculated; additionally, a simple mechanism is mentioned for the water-splitting reaction.
Collapse
|
13
|
Abdelazeez AAA, El-Fatah GA, Shaban M, Ahmed AM, Rabia M. ITO/Poly-3-Methylaniline/Au Electrode for Electrochemical Water Splitting and Dye Removal. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY 2021; 10:123009. [DOI: 10.1149/2162-8777/ac3d1a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Application of aniline derivative semiconductor nanopolymer and its Au composite for H2 generation and dye removal were investigated. Electrochemical polymerization of poly-3-methylaniline (P3MA) on ITO glass was carried out for acid medium. Au nanoparticles with crystal sizes of 15 and 30 nm were sputter coated on the surface. Chemical structure of the polymer and its composite was characterized using FTIR, XRD, 1HNMR, SEM, and UV-Vis. All function groups were confirmed using FTIR analyses. XRD confirmed the formation of nanopolymer with a crystal size of ∼15 nm. SEM confirmed the formation of smooth lamellar surface feature with a <20 nm nanoporous structure. Porosity and particle sizes increases with Au coating, confirmed using the modeling Image J program. Optical analysis also demonstrated that the strength of P3MA absorption peaks increases with rising Au coating time, in which the bandgap values changed from 1.64 to 1.63 eV for 15 and 30 nm Au, respectively. The photoelectrode ITO/PMT/30 nm Au was applied for H2 generation and dye removal. The current density (J
ph) values were −0.3 and −1.6 mA.cm−2 in the absence and presence of the Congo red dye, respectively. The incident photon-to-current conversion efficiency (IPCE%) for the electrode was 2.3 at 390 nm. The activation energy (E
a
) was 31.49 KJ mol−1. The enthalpy (∆H
*
) and entropy (∆S
*
) values were 114.49 and 160.46 JK−1 mol−1, respectively. A simple mechanism for the H2 generation and dye removal is mentioned.
Collapse
|
14
|
Almohammedi A, Shaban M, Mostafa H, Rabia M. Nanoporous TiN/TiO 2/Alumina Membrane for Photoelectrochemical Hydrogen Production from Sewage Water. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2617. [PMID: 34685061 PMCID: PMC8540468 DOI: 10.3390/nano11102617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022]
Abstract
An aluminum oxide, Al2O3, template is prepared using a novel Ni imprinting method with high hexagonal pore accuracy and order. The pore diameter after the widening process is about 320 nm. TiO2 layer is deposited inside the template using atomic layer deposition (ALD) followed by the deposition of 6 nm TiN thin film over the TiO2 using a direct current (DC) sputtering unit. The prepared nanotubular TiN/TiO2/Al2O3 was fully characterized using different analytical tools such as X-ray diffraction (XRD), Energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and optical UV-Vis spectroscopy. Exploring the current-voltage relationships under different light intensities, wavelengths, and temperatures was used to investigate the electrode's application before and after Au coating for H2 production from sewage water splitting without the use of any sacrificing agents. All thermodynamic parameters were determined, as well as quantum efficiency (QE) and incident photon to current conversion efficiency (IPCE). The QE was 0.25% and 0.34% at 400 mW·cm-2 for the photoelectrode before and after Au coating, respectively. Also, the activation energy was 27.22 and 18.84 kJ·mol-1, the enthalpy was 24.26 and 15.77 J·mol-1, and the entropy was 238.1 and 211.5 kJ-1·mol-1 before and after Au coating, respectively. Because of its high stability and low cost, the prepared photoelectrode may be suitable for industrial applications.
Collapse
Affiliation(s)
- Abdullah Almohammedi
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia;
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia;
| | - Huda Mostafa
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.); (M.R.)
| | - Mohamed Rabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.); (M.R.)
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
15
|
Ramesan MT, Anjitha T, Parvathi K, Anilkumar T, Mathew G. Nano zinc ferrite filler incorporated polyindole/poly(vinyl alcohol) blend: Preparation, characterization, and investigation of electrical properties. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22148] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. T. Ramesan
- Department of Chemistry; University of Calicut; Calicut Kerala India
| | - T. Anjitha
- Department of Chemistry; University of Calicut; Calicut Kerala India
| | - K. Parvathi
- Department of Chemistry; University of Calicut; Calicut Kerala India
| | - T. Anilkumar
- Department of Chemistry; University of Calicut; Calicut Kerala India
| | - G. Mathew
- Department of Chemistry; St. Mary's College, S. Bathery; Wayanad Kerala India
| |
Collapse
|
16
|
Sayyah ESM, Shaban M, Rabia M. A sensor of m
-cresol nanopolymer/Pt-electrode film for detection of lead ions by potentiometric methods. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21788] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- El-Said M. Sayyah
- Polymer Research Laboratory; Chemistry Department; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| | - Mohamed Shaban
- Nanophotonics and applications Laboratory; Physics Department; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| | - Mohamed Rabia
- Polymer Research Laboratory; Chemistry Department; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
- Nanophotonics and applications Laboratory; Physics Department; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| |
Collapse
|