1
|
Akhtar M, Zaman M, Siddiqi AZ, Ali H, Khan R, Alvi MN, Butt MH, El-Demerdash FM, Binjawhar DN, Sayed AA, Altyar AE, Abdel-Daim MM. Response Surface Methodology (RSM) approach to formulate and optimize the bilayer combination tablet of Tamsulosin and Finasteride. Saudi Pharm J 2024; 32:101957. [PMID: 38313822 PMCID: PMC10837631 DOI: 10.1016/j.jsps.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
An orally administered bilayer tablet with Tamsulosin (TAM) as the sustained release (SR) and Finasteride (FIN) as immediate release (IR) was manufactured. A response surface methodology was employed to formulate bilayer tablets with individual release layers, i.e., sustained and immediate release (SR and IR). Independent variables selected in both cases comprise hydroxypropyl methylcellulose (HPMC) as SR polymer, and avicel PH102 in the inner layer while Triacetin and talc in the outer layer, respectively. Tablets were prepared by direct compression, a total of 11 formulations were prepared for inner layer TAM, and 9 formulations for outer layer FIN were designed; these formulations were evaluated for hardness, friability, thickness, %drug content, and %drug release. A central composite design was employed in response surface methodology to design and optimize the formulation. The percentage of drug released was evaluated by in-vitro USP dissolution method of optimized formulation for 0.5, 2, and 6 hrs, and results were 24.63, 52.96, and 97.68 %, respectively. Drug release data was plotted in various kinetic models using a D.D solver, where drug release was first order that is concentration dependent and was best explained by Korsmeyer-Peppa kinetics, as the highest linearity was observed (R2 = 0.9693). However, a very close relationship was also noted with Higuchi kinetics (R2 = 0.9358). The mechanism of drug release was determined through the Korsmeyer model, and exponent "n" was found to be 0.4, indicative of an anomalous diffusion mechanism or diffusion coupled with erosion.
Collapse
Affiliation(s)
- Muneeba Akhtar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Hasan Ali
- Highnoon Laboratories Limited, Lahore, Pakistan
| | - Rahima Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Nadeem Alvi
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Hammad Butt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Waqar M, Zaman M, Hameed H, Jamshaid M, Irfan A, Shazly GA, Paiva-Santos AC, Bin Jardan YA. Formulation, Characterization, and Evaluation of β-Cyclodextrin Functionalized Hypericin Loaded Nanocarriers. ACS OMEGA 2023; 8:38191-38203. [PMID: 37867680 PMCID: PMC10586443 DOI: 10.1021/acsomega.3c04444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
St. John's wort in western Europe has been extensively utilized for the treatment of mild to moderate depression. Hypericin, a red pigment, is found to be responsible for its antidepressant activity. The aim of the current study was to prepare a nanoemulsion (O/W) of hypericin designed for immediate delivery of the drug to the brain for the treatment of depression. The nanoemulsion was prepared by means of a homogenization technique, and that was followed by its physicochemical evaluation. Tween-80, Span-80, β-cyclodextrin, ethanol, and eucalyptus oil were utilized for the manufacturing of the nanoemulsion. Morphological studies have revealed globular structures of nanosize that were confirmed by the zeta analysis. The consistency of particles was revealed by the low polydispersity values. pH values of all formulations lay within the range of nasal pH. The viscosity of the prepared formulations was affected by the increase in concentrations of β-cyclodextrin. After passing from the centrifugation and freeze-thaw studies, the prepared formulations showed good stability. Formulation F2 having a composition of oil phase (0.125 mL), aqueous phase (1.25 mL), and β-cyclodextrin (8%) showed the best results out of all the formulations, and F2 had a pH of 5.7, 5.35 cP viscosity, 1.332 refractive index, 148.8 globule size, and -10.8 zeta potential. The mean percentage drug release and in vitro and ex vivo percentage drug permeations were observed to be 71.75, 76, and 75.07%, respectively. Meanwhile, formulation F2 showed the maximum drug release and permeation. In vivo behavior studies including the open field test, elevated plus maze test, and tail suspension test were conducted to see the antidepressant effect of hypericin along with comparison with a commercially available treatment. In conclusion, the prepared formulation shows good efficacy as an antidepressant and can be considered as a natural alternative over synthetic drugs.
Collapse
Affiliation(s)
- Muhammad
Ahsan Waqar
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Ali Irfan
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Gamal A. Shazly
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Coimbra 3000-548, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Coimbra 3000-548, Portugal
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Salawi A, Almoshari Y, Sultan MH, Madkhali OA, Bakkari MA, Alshamrani M, Safhi AY, Sabei FY, Al Hagbani T, Ali MS, Alam MS. Production, Characterization, and In Vitro and In Vivo Studies of Nanoemulsions Containing St. John’s Wort Plant Constituents and Their Potential for the Treatment of Depression. Pharmaceuticals (Basel) 2023; 16:ph16040490. [PMID: 37111247 PMCID: PMC10141068 DOI: 10.3390/ph16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The current project was designed to prepare an oil-in-water (oil/water) hypericin nanoemulsion using eucalyptus oil for the preparation of an oil phase with chitosan as an emulsion stabilizer. The study might be a novelty in the field of pharmaceutical sciences, especially in the area of formulation development. Tween® 80 (Polysorbate) was used as the nonionic surfactant. The nanoemulsion was prepared by using the homogenization technique, followed by its physicochemical evaluation. The surface morphological studies showed the globular structure has a nano-sized diameter, as confirmed by zeta size analysis. The zeta potential analysis confirmed a positive surface charge that might be caused by the presence of chitosan in the formulation. The pH was in the range of 5.14 to 6.11, which could also be compatible with the range of nasal pH. The viscosity of the formulations was found to be affected by the concentration of chitosan (F1-11.61 to F4-49.28). The drug release studies showed that the presence of chitosan greatly influenced the drug release, as it was noticed that formulations having an elevated concentration of chitosan release lesser amounts of the drug. The persistent stress in the mouse model caused a variety of depressive- and anxiety-like behaviors that can be counteracted by chemicals isolated from plants, such as sulforaphane and tea polyphenols. In the behavioral test and source performance test, hypericin exhibited antidepressant-like effects. The results show that the mice treated for chronic mild stress had a considerably higher preference for sucrose after receiving continuous hypericin for 4 days (p = 0.0001) compared to the animals administered with normal saline (p ≤ 0.0001) as well as the naïve group (p ≤ 0.0001). In conclusion, prepared formulations were found to be stable and can be used as a potential candidate for the treatment of depression.
Collapse
|
4
|
Ghataty DS, Amer RI, Wasfi R, Shamma RN. Novel linezolid loaded bio-composite films as dressings for effective wound healing: experimental design, development, optimization, and antimicrobial activity. Drug Deliv 2022; 29:3168-3185. [PMID: 36184799 PMCID: PMC9543119 DOI: 10.1080/10717544.2022.2127974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Biphasic release bio-composite films of the low water-soluble drug, linezolid (LNZ), were formulated using the solvent casting technique. Different polymers and plasticizers (gelatin, Tween 80, polyethylene glycol 400, and glycerol) were assessed for the preparation of bio-composite films. An I-optimal design was applied for the optimization and to study the impact of polymer concentration (X1), plasticizer concentration (X2), polymer type (X3), and plasticizer type (X4) on different LNZ-loaded bio-composite films. The film thickness, moisture content, mechanical properties, swelling index, and percentage of drug release at fixed times opted as dependent variables. Results demonstrated a significant effect of all independent variables on the drug release from the prepared bio-composite films. The plasticizer concentration significantly increased the thickness, moisture content, elongation at break, swelling index, and in vitro drug release and significantly reduced the tensile strength. The optimized LNZ-loaded bio-composite film comprised of 15% Tween 80 and 30% PEG 400 was highly swellable, elastic, acceptable tensile properties, safe, maintained a moist environment, and indicated great antimicrobial activity against both Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus (MRSA), which are common wound infectious bacteria. The present study concludes that the optimized LNZ-loaded bio-composite film was successfully designed with fast drug release kinetics and it could be regarded as a promising novel antimicrobial wound dressing formulation.
Collapse
Affiliation(s)
- Dina Saeed Ghataty
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Ibrahim Amer
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Reham Wasfi
- Department of Microbiology and Immunology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,CONTACT Rehab Nabil Shamma
| |
Collapse
|
5
|
Optimization and evaluation of instant release buccal films of eletriptan: a quality-by-design approach. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Siddique W, Zaman M, Sarfraz RM, Butt MH, Rehman AU, Fassih N, Albadrani GM, Bayram R, Alfaifi MY, Abdel-Daim MM. The Development of Eletriptan Hydrobromide Immediate Release Buccal Films Using Central Composite Rotatable Design: An In Vivo and In Vitro Approach. Polymers (Basel) 2022; 14:polym14193981. [PMID: 36235932 PMCID: PMC9572369 DOI: 10.3390/polym14193981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The objective is to develop immediate release buccal films of Eletriptan Hydrobromide (EHBR) using hydroxypropyl methylcellulose (HPMC) E5. The buccal films have the ability to disintegrate rapidly and provide both systemic and local effects. The solvent casting method was employed to prepare the films and the central composite rotatable design (CCRD) model was used for film optimization. All the formulated films were characterized for physicochemical evaluation (Fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), differential scanning calorimetry (DSC), and Scanning electron microscopy (SEM), in in-vitro, ex-vivo, and in-vivo drug release. The fabricated films were transparent, colorless, and evenly distributed. The FTIR spectra showed no chemical interaction between the drug and excipients. In in-vitro analysis, the film has the highest% drug release (102.61 ± 1.13), while a maximum of 92.87 ± 0.87% drug was diffused across the cellulose membrane having a pore size of 0.45 µm. In the ex-vivo study, drug diffusion across the goat mucosa was performed and 80.9% of the drug was released in 30 min. In-vivo results depict a mean half-life (t½) of 4.54 ± 0.18 h and a Cmax of 128 ± 0.87 (ng/mL); Tmax was achieved in 1 h. Furthermore, instability and histopathological studies buccal films were proven to be safe and act as an effective dosage form. In a nutshell, optimized and safe instant release EHBR buccal films were prepared that have the tendency to provide effect effectively.
Collapse
Affiliation(s)
- Waqar Siddique
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
- Correspondence: (M.Z.); (R.M.S.)
| | - Rai Muhammad Sarfraz
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (M.Z.); (R.M.S.)
| | - Muhammad Hammad Butt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Atta Ur Rehman
- Department of Pharmacy, Forman Christian College, Lahore 54000, Pakistan
| | - Noman Fassih
- Department of Medical Cell Biology, Faculty of Medicine, Uppsala University, 75123 Uppsala, Sweden
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Roula Bayram
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Salawi A. An Insight into Preparatory Methods and Characterization of Orodispersible Film-A Review. Pharmaceuticals (Basel) 2022; 15:ph15070844. [PMID: 35890143 PMCID: PMC9323338 DOI: 10.3390/ph15070844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, researchers and companies have been trying to develop novel drug delivery systems to ensure safety, efficacy, compliance, and patient acceptability. Nowadays drug discovery and development are expensive, complex, and time-consuming processes, but trends are moving toward novel drug delivery systems. This delivery system helps to achieve drug response by local and systemic action through different routes. This novel approach of preparing orodispersible films (ODFs) provides benefits to paediatric, geriatric, and bedridden patients. This review paper aims to provide details on the preparation, characterization, and evaluation of ODFs; it also aims to focus on the positive and negative factors that affect film formulation and give an insight into potential drug candidates and polymers for use in ODFs. ODFs are effective, safe, and have good bioavailability as compared to fast-disintegrating tablets. The novel approach has various advantages because it provides instant effects in emergency situations and in schizophrenic and dysphasic patients without the need for taking water, the films disintegrating within a few seconds in the oral cavity. The solvent casting method is the most frequently used technique to develop ODFs, using film-forming polymers, which have a fast disintegration time, improved drug dissolution, and better drug contents.
Collapse
Affiliation(s)
- Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|