1
|
Al-Harbi N, Hussein MA, Al-Hadeethi Y, Felimban RI, Tayeb HH, Bedaiwi NMH, Alosaimi AM, Bekyarova E, Chen M. Bioactive hybrid membrane-based cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes nanocomposite for dental applications. J Mech Behav Biomed Mater 2023; 141:105795. [PMID: 37001249 DOI: 10.1016/j.jmbbm.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/28/2023]
Abstract
The present work aimed to fabricate a set of hybrid bioactive membrane in the form of bio-nanocomposite films for dental applications using the casting dissolution procedures. The formulation of the targeted materials was consisting of cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes with a general abbreviation CA-HAP-BG-SWCNTs. The nanocomposites were characterized using XRD, FTIR, SEM-EDX and Raman spectroscopy. XRD, FTIR and SEM characters confirm the nanocomposites formation with good compatibility. The fabricated materials had a semi crystalline structure. The mechanical and thermal properties, as well as contact angle and bioactivity of the fabricated nanocomposites were investigated. The SEM images for showed beehive-like architectures with a thicker frame for the second material. All fabricated materials showed good thermal behaviors. Furthermore, the agar diffusion antimicrobial study showed that the prepared nanocomposites do not exhibit an antibacterial activity against five pathogenic bacterial strains. Additionally, cytotoxicity of a dental nanocomposite filling agent was evaluated. Vero normal cells were incubated with test materials for 72h at 37 °C and 5% CO2. Cell viability was detected using a SRB assay. All nanocomposites were mildly to non-cytotoxic to Vero cells at high concentration in contrast to the inhibitory effect of doxorubicin which was added at 10-fold lower concertation than the nanocomposites. Hence, the proposed nanocomposite is promising candidates for dental applications.
Collapse
Affiliation(s)
- Nuha Al-Harbi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia; Department of Physics, Umm AL-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; 3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam H Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada M H Bedaiwi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia; Department of Physics, University of Tabuk, Duba University College, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Abeer M Alosaimi
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Elena Bekyarova
- Department of Chemical & Environmental Engineering, Center for Nanoscale Science and Engineering, University California Riverside, Riverside, CA, 92521, USA
| | - Mingguag Chen
- Physical Secience and Enginerring Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Jayaprakash D, Mani Rahulan K, Annie Sujatha R, Merija KS, Angeline Little Flower N. Mechanical Characterization of Graphene Oxide/Zinc Molybdate Nanocomposite Incorporated Cellulose Acetate Ultrafiltration Membranes. J MACROMOL SCI B 2023. [DOI: 10.1080/00222348.2023.2174676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D Jayaprakash
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - K Mani Rahulan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - R Annie Sujatha
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - K S Merija
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - N Angeline Little Flower
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| |
Collapse
|
3
|
The Mechanical Properties of Nanocomposites Reinforced with PA6 Electrospun Nanofibers. Polymers (Basel) 2023; 15:polym15030673. [PMID: 36771974 PMCID: PMC9919334 DOI: 10.3390/polym15030673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Electrospun nanofibers are very popular in polymer nanocomposites because they have a high aspect ratio, a large surface area, and good mechanical properties, which gives them a broad range of uses. The application of nonwoven structures of electrospun nanofiber mats has historically been limited to enhancing the interlaminar responses of fiber-reinforced composites. However, the potential of oriented nanofibers to improve the characteristics of bulk matrices cannot be overstated. In this research, a multilayered laminate composite was created by introducing polyamide (PA6)-oriented nanofibers into an epoxy matrix in order to examine the effect of the nanofibers on the tensile and thermal characteristics of the nanocomposite. The specimens' fracture surfaces were examined using scanning electron microscopy (SEM). Using differential scanning calorimetry (DSC) analysis, the thermal characteristics of the nanofiber-layered composites were investigated. The results demonstrated a 10.58% peak in the nanocomposites' elastic modulus, which was compared to the numerical simulation and the analytical model. This work proposes a technique for the development of lightweight high-performance nanocomposites.
Collapse
|
4
|
Attari N, Hausler R. Reinforcing Effects of Fibrous and Crystalline Nanocelluloses on Cellulose Acetate Membranes. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
5
|
Synergistic Enhanced Solar-Driven Water Purification and CO2 Reduction via Photothermal Catalytic Membrane Distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Oliveira AS, Ferreira I, Branco AC, Silva JC, Costa C, Nolasco P, Marques AC, Silva D, Colaço R, Figueiredo-Pina CG, Serro AP. Development of polycarbonate urethane-based materials with controlled diclofenac release for cartilage replacement. J Biomed Mater Res B Appl Biomater 2022; 110:1839-1852. [PMID: 35226412 DOI: 10.1002/jbm.b.35042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/04/2021] [Accepted: 02/09/2022] [Indexed: 11/05/2022]
Abstract
Hydrogels are very promising human cartilage replacement materials since they are able to mimic its structure and properties. Besides, they can be used as platforms for drug delivery to reduce inflammatory postsurgical reactions. Polycarbonate urethane (PCU) has been used in orthopedic applications due to its long-term biocompatibility and bio-durability. In this work, PCU-based hydrogels with the ability to release an anti-inflammatory (diclofenac) were developed, for the first time, for such purpose. The materials were reinforced with different amounts of cellulose acetate (CA, 10%, 15%, and 25% w/w) or carbon nanotubes (CNT, 1% and 2% w/w) in order to improve their mechanical properties. Samples were characterized in terms of compressive and tensile mechanical behavior. It was found that 15% CA and 2% CNT reinforcement led to the best mechanical properties. Thus, these materials were further characterized in terms of morphology, wettability, and friction coefficient (CoF). Contrarily to CNTs, the addition of CA significantly increased the material's porosity. Both materials became more hydrophilic, and the CoF slightly increased for PCU + 15%CA. The materials were loaded by soaking with diclofenac, and drug release experiments were conducted. PCU, PCU + 15%CA and PCU + 2%CNT presented similar release profiles, being able to ensure a controlled release of DFN for at least 4 days. Finally, in vitro cytotoxicity tests using human chondrocytes were also performed and confirmed a high biocompatibility for the three studied materials.
Collapse
Affiliation(s)
- Andreia S Oliveira
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,IDMEC e Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,CiiEM, Escola Superior de Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Inês Ferreira
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,CiiEM, Escola Superior de Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Ana C Branco
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,CiiEM, Escola Superior de Saúde Egas Moniz, Monte de Caparica, Portugal.,CDP2T, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - João C Silva
- IBB - Instituto de Bioengenharia e Biociências e Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Costa
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Nolasco
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Silva
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,CiiEM, Escola Superior de Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Rogério Colaço
- IDMEC e Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Célio G Figueiredo-Pina
- CiiEM, Escola Superior de Saúde Egas Moniz, Monte de Caparica, Portugal.,CDP2T, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal.,CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana P Serro
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,CiiEM, Escola Superior de Saúde Egas Moniz, Monte de Caparica, Portugal
| |
Collapse
|
7
|
Mohamed A, Yousef S, Tonkonogovas A, Makarevicius V, Stankevičius A. High performance of PES-GNs MMMs for gas separation and selectivity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
8
|
Motloung MP, Mofokeng TG, Ojijo V, Ray SS. A review on the processing–morphology–property relationship in biodegradable polymer composites containing carbon nanotubes and nanofibers. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Vincent Ojijo
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
9
|
Knapczyk-Korczak J, Stachewicz U. Biomimicking spider webs for effective fog water harvesting with electrospun polymer fibers. NANOSCALE 2021; 13:16034-16051. [PMID: 34581383 DOI: 10.1039/d1nr05111c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fog is an underestimated source of water, especially in regions where conventional methods of water harvesting are impossible, ineffective, or challenging for low-cost water resources. Interestingly, many novel methods and developments for effective water harvesting are inspired by nature. Therefore, in this review, we focused on one of the most researched and developing forms of electrospun polymer fibers, which successfully imitate many fascinating natural materials for instance spider webs. We showed how fiber morphology and wetting properties can increase the fog collection rate, and also observed the influence of fog water collection parameters on testing their efficiency. This review summarizes the current state of the art on water collection by fibrous meshes and offers suggestions for the testing of new designs under laboratory conditions by classifying the parameters already reported in experimental set-ups. This is extremely important, as fog collection under laboratory conditions is the first step toward creating a new water harvesting technology. This review summarizes all the approaches taken so far to develop the most effective water collection systems based on electrospun polymer fibers.
Collapse
Affiliation(s)
- Joanna Knapczyk-Korczak
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
10
|
Highly Efficient Visible Light Photodegradation of Cr(VI) Using Electrospun MWCNTs-Fe3O4@PES Nanofibers. Catalysts 2021. [DOI: 10.3390/catal11070868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of highly efficient photocatalysis has been prepared by two different methods for the photodegradation of Cr(VI) from an aqueous solution under visible light. The electrospun polyethersulfone (PES)/iron oxide (Fe3O4) and multi-wall carbon nanotubes (MWCNTs) composite nanofibers have been prepared using the electrospinning technique. The prepared materials were characterized by SEM and XRD analysis. The result reveals the successful fabrication of the composite nanofiber with uniformly and smooth nanofibers. The effect of numerous parameters were explored to investigate the effects of pH value, contact time, concentration of Cr(VI), and reusability. The MWCNTs-Fe3O4@PES composite nanofibers exhibited excellent photodegradation of Cr(VI) at pH 2 in 80 min. The photocatalysis materials are highly stable without significant reduction of the photocatalytic efficiency of Cr(VI) after five cycles. Therefore, due to its easy separation and reuse without loss of photocatalytic efficiency, the photocatalysis membrane has tremendous potential for the removal of heavy metals from aqueous solutions.
Collapse
|
11
|
Abdelmaksoud M, Mohamed A, Sayed A, Khairy S. Physical properties of PVDF-GO/black-TiO 2 nanofibers and its photocatalytic degradation of methylene blue and malachite green dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30613-30625. [PMID: 33587272 DOI: 10.1007/s11356-021-12618-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Black TiO2 and graphene oxide (GO) have attracted intensive attention as an effective catalyst on visible light driven for photodegrading of dyes. In this study, nano-black TiO2 was prepared by a simple hydrogenation of the anatase titanium oxide, and the graphene oxide was prepared by applying the modified Hummers method. The diffuse reflectance spectroscopy has been investigated to find out the optical energy gaps of the treated and nano-black samples. The prepared powders and nanofiber membranes are carefully examined to ensure their single phase and compound structure formation as well as to measure the equivalent crystallite size and particle distributions. The optimum degradation efficiency of malachite green and methylene blue dyes occurred at pH values of 8 and 10, respectively. The maximum photocatalytic degradation efficiencies of malachite green (MG) and methylene blue (MB) were found to be 74 and 39%, respectively, under visible light after 30 min. The degradation efficiency of MG is peaked at pH 8 and 20 mg of the nano-black TiO2. The stability and flexibility of the nanofibers allow their application in a continuous system and can be reused after several cycles.
Collapse
Affiliation(s)
- Muhammed Abdelmaksoud
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, 12588, Egypt
| | - Alaa Mohamed
- Department of Mechatronics, Canadian International College, Fifth Settlement, New Cairo, Egypt.
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Abderrahman Sayed
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, 12588, Egypt
| | - Sherif Khairy
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Li X, Zou H, Zhuo B, Shao C, Cao S, Zhang B, Yuan Q. Steady and Robust CNTs-Based Electric Heating Membrane Fabricated by Addition of Nanocellulose and Hot-Press Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5763-5775. [PMID: 33960796 DOI: 10.1021/acs.langmuir.1c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a type of biomass-based electric heating membrane (EHM) with excellent stability was fabricated; this was achieved by incorporating carbon nanotubes (CNTs) into the nanofibrillated cellulose (NFC) as a natural dispersant and a biological substrate, as well as via the control of ultrasonic dispersion, grammage, and encapsulation using poly(dimethylsiloxane) (PDMS) with hot pressing. NFC entangles with CNTs in the form of an intertwined network and non-covalent interactions to fabricate a flexible EHM with steady electric heating performance; this formation is attributed to not only their similar morphology and surface-active groups but also the use of NFC that avoids additional disturbances in the overlapped interface among CNTs as far as possible. The obtained steady resistance varies as low as 5.1% under energized operation. In the encapsulated EHM (EM), PDMS was anchored on its surface by using hot pressing and an intertwined structure to enhance flexibility and robustness. The encapsulated membrane can be used in low-voltage applications, which require flexibility, waterproofing, and insulation.
Collapse
Affiliation(s)
- Xinpu Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Haojie Zou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bing Zhuo
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Chuang Shao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Shuoang Cao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Binxia Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Quanping Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Fabrication of Photoactive Electrospun Cellulose Acetate Nanofibers for Antibacterial Applications. ENERGIES 2021. [DOI: 10.3390/en14092598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the study was to investigate the process of electrostatic fabrication of cellulose acetate (CA) nanofibers containing methylene blue (MB) as a photosensitizer. The electrical, physicochemical, and biocidal properties of the prepared material were given. CA nanofibers were prepared by electrospinning method using a solvent mixture of acetone and distilled water (9:1 vv−1) and different concentrations of CA (i.e., 10–21%). Additionally, methylene blue was implemented into the polymer solution with a CA concentration of 17% to obtain fibers with photo-bactericidal properties. Pure electrospun CA fibers were more uniform than fibers with MB (i.e., ribbon shape). Fiber diameters did not exceed 900 nm for the tested polymer solutions and flow rate below 1.0 mL h−1. The polymer properties (i.e., concentration, resistivity) and other parameters of the process (i.e., flow rate, an applied voltage) strongly influenced the size of the fibers. Plasma treatment of nanofibers resulted in reduced biofilm formation on their surface. The results of photo-bactericidal activity (i.e., up to 180 min) confirmed the high efficiency of inactivation of Staphylococcus aureus cells using fibers containing methylene blue (i.e., with and without plasma treatment). The most effective reduction in the number of biofilm cells was equal to 99.99 ± 0.3%.
Collapse
|
14
|
Ji Y, Xia Q, Cui J, Zhu M, Ma Y, Wang Y, Gan L, Han S. High pressure laminates reinforced with electrospun cellulose acetate nanofibers. Carbohydr Polym 2021; 254:117461. [PMID: 33357920 DOI: 10.1016/j.carbpol.2020.117461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 01/16/2023]
Abstract
In the work, the non-woven cellulose acetate (CA) nanofiber mats were prepared via electrospinning, and CA nanofiber were incorporated into the core layer of the high-pressure laminates (HPLs). When the concentration of CA was 16 wt%, SEM images demonstrated that the morphology of the CA nanofiber mat was the best, with an average diameter of 654±246 nm. When CA nanofiber mats were incorporated into the core layer of HPLs, the mechanical properties of the resulted HPLs composites were significantly improved. Specifically, the tensile strength and elongation at break of the nanofiber mats reinforced HPLs composites increased remarkably to 40.8 ±1.1 MPa and 27.9 ± 0.9 %, respectively, which were nearly 6 times and 4.4 times higher than those of the pure HPLs. Furthermore, the incorporation of the CA nanofiber mats also significantly improved the flame retardancy of the HPLs, which was revealed from the thermogravimetric analysis (TGA) results.
Collapse
Affiliation(s)
- Yujie Ji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qi Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Juqing Cui
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Minghao Zhu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yufeng Ma
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yutong Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuguang Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
15
|
Culica ME, Chibac-Scutaru AL, Melinte V, Coseri S. Cellulose Acetate Incorporating Organically Functionalized CeO 2 NPs: Efficient Materials for UV Filtering Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2955. [PMID: 32630331 PMCID: PMC7372434 DOI: 10.3390/ma13132955] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
One of the major issues faced when constructing various materials incorporating inorganic nanoparticles (NPs) is aggregation leading to loss of their final activity. In our work, cellulose acetate (CA) has been used to serve as matrix for the synthesis of UV-shielding and transparent films containing various amounts (1-5 wt.%) of cerium oxide (CeO2) NPs. In order to attain an improved dispersion and a better connectivity between NPs and the cellulose matrix, the surface of CeO2 NPs have been previously functionalized by the reaction with 3-aminopropyl(diethoxy)methylsilane (APDMS). The uniform dispersion of the NPs in the homogeneous thin films has been evidenced by using Transmission Electron Microscopy (TEM) and Fourier Transformation Infrared Spectroscopy (FTIR) characterization. The investigation of the optical properties for the hybrid films through UV-Vis spectroscopy revealed that the presence of CeO2 NPs in the CA matrix determined the appearance of strong UV absorption bands in the region 312-317 nm, which supports their use as efficient UV absorbers. This study has shown that UV shielding ability of the nanocomposites can be easily tuned by adjusting the numberof inorganic NPs in the CA template.
Collapse
Affiliation(s)
| | | | - Violeta Melinte
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.E.C.); (A.L.C.-S.)
| | - Sergiu Coseri
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.E.C.); (A.L.C.-S.)
| |
Collapse
|
16
|
Iqhrammullah M, Marlina M, Khalil HPSA, Kurniawan KH, Suyanto H, Hedwig R, Karnadi I, Olaiya NG, Abdullah CK, Abdulmadjid SN. Characterization and Performance Evaluation of Cellulose Acetate-Polyurethane Film for Lead II Ion Removal. Polymers (Basel) 2020; 12:polym12061317. [PMID: 32526903 PMCID: PMC7361824 DOI: 10.3390/polym12061317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/07/2022] Open
Abstract
Global pollution from toxic metal waste has resulted in increased research on toxic metal adsorption. A cellulose acetate–polyurethane (CA–PU) film adsorbent was successfully prepared in this research. The cellulose acetate–polyurethane film adsorbent was prepared with a polycondensation reaction between cellulose acetate and methylene diphenyl diisocyanate. The CA–PU bond formation was confirmed by functional group analysis obtained from Fourier transform infrared (FTIR) spectroscopy. The obtained film was characterized for improved tensile and thermal properties with the addition of methylene diphenyl diisocyanate (MDI). The adsorption ability of the obtained film was evaluated with laser-induced breakdown spectroscopy (LIBS). The best film adsorbent from the LIBS was selected and studied for adsorption isotherm. The FTIR analysis confirmed the formation of the CA–PU bond from the polycondensation between cellulose acetate and the methylene diphenyl diisocyanate. The result showed that the addition of methylene diphenyl diisocyanate (MDI) resulted in the urethane network’s growth. The characterization result showed an improvement in the morphology, thermal stability, and tensile strength of the film. The LIBS studies showed improvement in the adsorption of Pb2+ with CA–PU compared with the neat CA. The isotherm studies revealed that Pb2+ adsorption by cellulose acetate–polyurethane film adsorbent was heterogeneously dependent on the Freundlich isotherm model (R2 = 0.97044). Overall, the polycondensation method proposed by this study enhanced the Pb2+ removal, and was comparable to those reported in previous studies.
Collapse
Affiliation(s)
- M. Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Marlina Marlina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: (H.P.S.A.K.); (S.N.A.)
| | - K. H. Kurniawan
- Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630, Indonesia;
| | - H. Suyanto
- Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali, Indonesia;
| | - R. Hedwig
- Department of Computer Engineering, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia;
| | - I. Karnadi
- Department of Electrical Engineering, Krida Wacana Christian University, Jakarta 11470, Indonesia;
| | - N. G. Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology, PMB 704, Akure 340252, Ondo State, Nigeria;
| | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - S. N. Abdulmadjid
- Department of Physics, Faculty of Mathematics and Natural Sciences Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Correspondence: (H.P.S.A.K.); (S.N.A.)
| |
Collapse
|
17
|
Aris NIF, Rahman NA, Wahid MH, Yahaya N, Abdul Keyon AS, Kamaruzaman S. Superhydrophilic graphene oxide/electrospun cellulose nanofibre for efficient adsorption of organophosphorus pesticides from environmental samples. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192050. [PMID: 32269813 PMCID: PMC7137939 DOI: 10.1098/rsos.192050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Superhydrophilic graphene oxide/electrospun cellulose nanofibre (GO/CNF) was synthesized, characterized and successfully used in a solid-phase membrane tip adsorption (SPMTA) as an adsorbent towards a simultaneous analysis of polar organophosphorus pesticides (OPPs) in several food and water samples. Separation, determination and quantification were achieved prior to ultra-performance liquid chromatography coupled with ultraviolet detector. The influence of several parameters such as sample pH, adsorption time, adsorbent dosage and initial concentration were investigated. SPMTA was linear in the range of 0.05 and 10 mg l-1 under the optimum adsorption conditions (sample pH 12; 5 mg of adsorbent dosage; 15 min of adsorption time) for methyl parathion, ethoprophos, sulfotepp and chlorpyrifos with excellent correlation coefficients of 0.994-0.999. Acceptable precision (RSDs) as achieved for intraday (0.06-5.44%, n = 3) and interday (0.17-7.76%, n = 3) analyses. Low limits of detection (0.01-0.05 mg l-1) and satisfactory consistency in adsorption (71.14-99.95%) were obtained for the spiked OPPs from Sungai Pahang, Tasik Cheras, cabbages and rice samples. The adsorption data were well followed the second-order kinetic model and fits the Freundlich adsorption model. The newly synthesized GO/CNF showed a great adsorbent potential for OPPs analysis.
Collapse
Affiliation(s)
- Nor Izzati Fikrah Aris
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norizah Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Haniff Wahid
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, CanadaV6T 1Z1
| | - Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310 11 Johor Bahru, Johor, Malaysia
| | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Abdel-Mottaleb M, Khalil A, Karim S, Osman T, A.Khattab. High performance of PAN/GO-ZnO composite nanofibers for photocatalytic degradation under visible irradiation. J Mech Behav Biomed Mater 2019; 96:118-124. [DOI: 10.1016/j.jmbbm.2019.04.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 10/27/2022]
|
19
|
Mohamed A, Nasser WS, Kamel BM, Hashem T. Photodegradation of phenol using composite nanofibers under visible light irradiation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Mohamed A, Ghobara MM, Abdelmaksoud M, Mohamed GG. A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Mohamed A, Salama A, Nasser WS, Uheida A. Photodegradation of Ibuprofen, Cetirizine, and Naproxen by PAN-MWCNT/TiO 2-NH 2 nanofiber membrane under UV light irradiation. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:47. [PMID: 30595997 PMCID: PMC6280780 DOI: 10.1186/s12302-018-0177-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/24/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND In this study, the photodegradation of three pharmaceuticals, namely Ibuprofen (IBP), Naproxen (NPX), and Cetirizine (CIZ) in aqueous media was investigated under UV irradiation. The photocatalyst used in this work consists of surface functionalized titanium dioxide (TiO2-NH2) nanoparticles grafted into Polyacrylonitrile (PAN)/multi-walled carbon nanotube composite nanofibers. Surface modification of the fabricated composite nanofibers was illustrated using XRD, FTIR, and SEM analyses. RESULTS Sets of experiments were performed to study the effect of pharmaceuticals initial concentration (5-50 mg/L), solution pH (2-9), and irradiation time on the degradation efficiency. The results demonstrated that more than 99% degradation efficiency was obtained for IBP, CIZ, and NPX within 120, 40, and 25 min, respectively. CONCLUSIONS Comparatively, the photocatalytic degradation of pharmaceuticals using PAN-CNT/TiO2-NH2 composite nanofibers was much more efficient than with PAN/TiO2-NH2 composite nanofibers.
Collapse
Affiliation(s)
- Alaa Mohamed
- Egypt Nanotechnology Center, EGNC, Cairo University, Giza, 12613 Egypt
- Production Engineering and Printing Technology Department, Akhbar El Yom Academy, Giza, 12655 Egypt
| | - Ahmed Salama
- Department of Production Engineering and Manufacturing Technology, Modern Academy for Engineering and Technology In Maadi, Cairo, Egypt
| | | | - Abdusalam Uheida
- Department of Applied Physics, School of Engineering Sciences, Royal Institute of Technology (KTH), 16440 Kista, Stockholm Sweden
| |
Collapse
|
22
|
Chen Y, Ma Y, Lu W, Guo Y, Zhu Y, Lu H, Song Y. Environmentally Friendly Gelatin/ β-Cyclodextrin Composite Fiber Adsorbents for the Efficient Removal of Dyes from Wastewater. Molecules 2018; 23:E2473. [PMID: 30261678 PMCID: PMC6222675 DOI: 10.3390/molecules23102473] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
Abstract
In this paper, environmentally friendly gelatin/β-cyclodextrin (β-CD) composite fiber adsorbents prepared by electrospinning were used for the removal of dyes from wastewater. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and a universal materials tester were employed to characterize the internal structures, surface morphologies and mechanical strength of the composite fiber adsorbents. Additionally, the fiber was evaluated as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of the raw material ratio, pH, temperature, concentration and adsorption time were studied. The results show that the gelatin/β-CD composite fiber adsorbents possess excellent mechanical strength and high adsorption efficiency for MB. The adsorption equilibrium and adsorption kinetics are well-described by the Langmuir isotherm model and the pseudo-second-order kinetic model, respectively. The theoretical maximum adsorption capacity is 47.4 mg·g-1. Additionally, after nine successive desorption-adsorption cycles, the removal rate is still over 70%. Moreover, the gelatin/β-CD composite fiber adsorbents exhibit excellent adsorption capability for basic fuchsin, gentian violet, brilliant blue R and malachite green dyes. Therefore, owing to the characteristics of degradability, low cost and high-efficiency, the gelatin/β-CD composite fiber can be used as an efficient adsorbent for the removal of dyes from wastewater.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yanli Ma
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yi Zhu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Haojun Lu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Yeping Song
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|