1
|
Shi L, Benetti D, Li F, Wei Q, Rosei F. Design of MOF-Derived NiO-Carbon Nanohybrids Photocathodes Sensitized with Quantum Dots for Solar Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201815. [PMID: 35521950 DOI: 10.1002/smll.202201815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nickel oxide (NiO) is a promising p-type material for a wide range of optoelectronic devices, as well as photocathode for photoelectrochemical (PEC) water splitting. However, traditional NiO photoelectrodes exhibit a wide bandgap (3.6 eV), intrinsic poor electrical conductivity, and low surface area, leading to low PEC systems performance. Herein, the authors explore a Ni-based metal-organic framework (MOF) template method to obtain hierarchical hollow spheres of carbon/NiO nanostructure by successive carbonization and oxidation treatments. After sensitization with core and core-shell quantum dots (QDs), the optimized NiO-photocathode exhibits a maximum current density of -93.6 µA cm-2 at 0 V versus RHE (reversible hydrogen electrode) in neutral pH (6.8) and -285 µA cm-2 at -0.4 V versus RHE. Compared to pure NiO and single-core CdSe QDs, a 2.2-fold increase in photocurrent can be obtained. The improvement in the performance of this hybrid is not only due to the high surface area for loading QDs and light scattering, but also to the presence of a highly conductive carbon matrix that promotes fast charge transfer. The proposed MOFs-based NiO/carbon photocathode sensitized with QDs can be an effective strategy to improve the efficiency of metal oxide-based PEC systems for hydrogen generation.
Collapse
Affiliation(s)
- Li Shi
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Daniele Benetti
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
| | - Faying Li
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
| |
Collapse
|
2
|
Fu N, Wang L, Zou X, Li C, Zhang S, Zhao B, Gao Y, Wang L. A photoelectrochemical sensor based on a reliable basic photoactive matrix possessing good analytical performance for miRNA-21 detection. Analyst 2021; 145:7388-7396. [PMID: 32935667 DOI: 10.1039/d0an01297a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The basic photoactive matrixes on transparent electrodes are essential for the performance of photoelectrochemical (PEC) biosensors. Herein, we demonstrate an optimized fabrication strategy toward a reliable ITO/TiO2/AuNP photoanode by sequential deposition of TiO2/Au nanoparticles (Au NPs) on indium tin oxide (ITO) substrates. The identified fabrication conditions include spin-coating tetraisopropyl titanate on ITO slices followed by in situ electrodeposition of Au NPs and finally the thermal annealing treatment. By the conjugation of the thiolated hairpin NH2-DNA sequence and CdTe quantum dots (QDs) onto the thus-prepared photoanodes, a novel PEC sensor for the ultrasensitive detection of miRNA was constructed. The proposed PEC sensor offered advantages including simple structure, storage stability and excellent detection reproducibility as well as sensitivity and specificity toward miRNA-21. Finally, we found that this PEC displayed a broad detection linear range of 1.0 fM to 1.0 nM with a low detection limit of 0.37 fM. This PEC sensor can also excellently discriminate the mismatched miRNA. Moreover, the PEC sensor also showed a satisfactory result in normal human serum sample analysis. These findings emphasized the importance of basic photoactive matrixes for the fabrication of PEC sensors, providing solid fundamental insights for future application of metal oxide substrates for other PEC applications, especially PEC biosensors.
Collapse
Affiliation(s)
- Nina Fu
- Key Laboratory for Organic Electronics and Information Displays &Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Pascariu P, Olaru N, Rotaru A, Airinei A. Innovative Low-Cost Carbon/ZnO Hybrid Materials with Enhanced Photocatalytic Activity towards Organic Pollutant Dyes' Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1873. [PMID: 32962143 PMCID: PMC7559004 DOI: 10.3390/nano10091873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
A new type of material based on carbon/ZnO nanostructures that possesses both adsorption and photocatalytic properties was obtained in three stages: cellulose acetate butyrate (CAB) microfiber mats prepared by the electrospinning method, ZnO nanostructures growth by dipping and hydrothermal methods, and finally thermal calcination at 600 °C in N2 for 30 min. X-ray diffraction (XRD) confirmed the structural characteristics. It was found that ZnO possesses a hexagonal wurtzite crystalline structure. The ZnO nanocrystals with star-like and nanorod shapes were evidenced by scanning electron microscopy (SEM) measurements. A significant decrease in Eg value was found for carbon/ZnO hybrid materials (2.51 eV) as compared to ZnO nanostructures (3.21 eV). The photocatalytic activity was evaluated by studying the degradation of three dyes, Methylene Blue (MB), Rhodamine B (RhB) and Congo Red (CR) under visible-light irradiation. Therefore, the maximum color removal efficiency (both adsorption and photocatalytic processes) was: 97.97% of MB (C0 = 10 mg/L), 98.34% of RhB (C0 = 5 mg/L), and 91.93% of CR (C0 = 10 mg/L). Moreover, the value of the rate constant (k) was found to be 0.29 × 10-2 min-1. The novelty of this study relies on obtaining new photocatalysts based on carbon/ZnO using cheap and accessible raw materials, and low-cost preparation techniques.
Collapse
Affiliation(s)
- Petronela Pascariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.O.); (A.A.)
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan cel Mare University, 13 Str. Universitatii, 720229 Suceava, Romania;
| | - Niculae Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.O.); (A.A.)
| | - Aurelian Rotaru
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan cel Mare University, 13 Str. Universitatii, 720229 Suceava, Romania;
| | - Anton Airinei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.O.); (A.A.)
| |
Collapse
|
4
|
Rho WY, Lee KH, Han SH, Kim HY, Jun BH. Au-Embedded and Carbon-Doped Freestanding TiO 2 Nanotube Arrays in Dye-Sensitized Solar Cells for Better Energy Conversion Efficiency. MICROMACHINES 2019; 10:E805. [PMID: 31766717 PMCID: PMC6953097 DOI: 10.3390/mi10120805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022]
Abstract
Dye-sensitized solar cells (DSSCs) are fabricated with freestanding TiO2 nanotube arrays (TNTAs) which are incorporated with Au nanoparticles (NPs) and carbon materials via electrodeposition and chemical vapor deposition (CVD) method to create a plasmonic effect and better electron transport that will enhance their energy conversion efficiency (ECE). The ECE of DSSCs based on the freestanding TNTAs is 5.87%. The ECE of DSSCs, based on the freestanding TNTAs with Au NPs or carbon materials, is 6.57% or 6.59%, respectively, and the final results of DSSCs according to the freestanding TNTAs with Au NPs and carbon materials is increased from 5.87% to 7.24%, which is an enhancement of 23.34% owing to plasmonic effect and better electron transport. Au NPs are incorporated into the channel of freestanding TNTAs and are characterized by CS-corrected-field emission transmission electron microscope (Cs-FE-TEM) and elemental mapping. Carbon materials are also well-incorporated in the channel of freestanding TNTAs and are analyzed by Raman spectroscopy.
Collapse
Affiliation(s)
- Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea; (W.-Y.R.); (K.-H.L.); (S.-H.H.); (H.-Y.K.)
| | - Kang-Hun Lee
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea; (W.-Y.R.); (K.-H.L.); (S.-H.H.); (H.-Y.K.)
| | - Seung-Hee Han
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea; (W.-Y.R.); (K.-H.L.); (S.-H.H.); (H.-Y.K.)
| | - Hyo-Yeon Kim
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea; (W.-Y.R.); (K.-H.L.); (S.-H.H.); (H.-Y.K.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
5
|
Bandosz TJ, Ania CO. Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800293. [PMID: 30250787 PMCID: PMC6145414 DOI: 10.1002/advs.201800293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Even though, owing to the complexity of nanoporous carbons' structure and chemistry, the origin of their photoactivity is not yet fully understood, the recent works addressed here clearly show the ability of these materials to absorb light and convert the photogenerated charge carriers into chemical reactions. In many aspects, nanoporous carbons are similar to graphene; their pores are built of distorted graphene layers and defects that arise from their amorphicity and reactivity. As in graphene, the photoactivity of nanoporous carbons is linked to their semiconducting, optical, and electronic properties, defined by the composition and structural defects in the distorted graphene layers that facilitate the exciton splitting and charge separation, minimizing surface recombination. The tight confinement in the nanopores is critical to avoid surface charge recombination and to obtain high photochemical quantum yields. The results obtained so far, although the field is still in its infancy, leave no doubts on the possibilities of applying photochemistry in the confined space of carbon pores in various strategic disciplines such as degradation of pollutants, solar water splitting, or CO2 mitigation. Perhaps the future of photovoltaics and smart-self-cleaning or photocorrosion coatings is in exploring the use of nanoporous carbons.
Collapse
Affiliation(s)
- Teresa J. Bandosz
- Department of Chemistry and BiochemistryThe City College of New YorkNew YorkNY10031USA
- CUNY Energy CenterThe City College of New YorkNew YorkNY10031USA
| | - Conchi O. Ania
- CEMHTICNRS (UPR 3079)Univ. Orleans4571OrléansFrance
- Instituto Nacional del Carbon (INCAR)CSIC33011OviedoSpain
| |
Collapse
|
6
|
Wu H, Li X, Tung C, Wu L. Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700684. [PMID: 29721417 PMCID: PMC5908380 DOI: 10.1002/advs.201700684] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/14/2017] [Indexed: 05/19/2023]
Abstract
The increasing demand for sustainable and environmentally benign energy has stimulated intense research to establish highly efficient photo-electrochemical (PEC) cells for direct solar-to-fuel conversion via water splitting. Light absorption, as the initial step of the catalytic process, is regarded as the foundation of establishing highly efficient PEC systems. To make full use of visible light, sensitization on photoelectrodes using either molecular dyes or semiconducting quantum dots provides a promising method. In this field, however, there remain many fundamental issues to be solved, which need in-depth study. Here, fundamental knowledge of PEC systems is introduced to enable readers a better understanding of this field. Then, the development history and current state in both molecular dye- and quantum dot-sensitized photocathodes for PEC water splitting are discussed. A systematical comparison between the two systems has been made. Special emphasis is placed on the research of quantum dot-sensitized photocathodes, which have shown superiority in both efficiency and durability towards PEC water splitting at the present stage. Finally, the opportunities and challenges in the future for sensitized PEC water-splitting systems are proposed.
Collapse
Affiliation(s)
- Hao‐Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Batmunkh M, Shearer CJ, Bat-Erdene M, Biggs MJ, Shapter JG. Single-Walled Carbon Nanotubes Enhance the Efficiency and Stability of Mesoscopic Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19945-19954. [PMID: 28537374 DOI: 10.1021/acsami.7b04894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon nanotubes are 1D nanocarbons with excellent properties and have been extensively used in various electronic and optoelectronic device applications including solar cells. Herein, we report a significant enhancement in the efficiency and stability of perovskite solar cells (PSCs) by employing single-walled carbon nanotubes (SWCNTs) in the mesoporous photoelectrode. It was found that SWCNTs provide both rapid electron transfer and advantageously shifts the conduction band minimum of the TiO2 photoelectrode and thus enhances all photovoltaic parameters of PSCs. The TiO2-SWCNTs photoelectrode based PSC device exhibited a power conversion efficiency (PCE) of up to 16.11%, while the device fabricated without SWCNTs displayed an efficiency of 13.53%. More importantly, we found that the SWCNTs in the TiO2 nanoparticles (TiO2 NPs) based photoelectrode suppress the hysteresis behavior and significantly enhance both the light and long-term storage stability of the PSC devices. The present work provides important guidance for future investigations in utilizing carbonaceous materials for solar cells.
Collapse
Affiliation(s)
- Munkhbayar Batmunkh
- School of Chemical and Physical Sciences, Flinders University , Bedford Park, Adelaide, South Australia 5042, Australia
- School of Chemical Engineering, The University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Cameron J Shearer
- School of Chemical and Physical Sciences, Flinders University , Bedford Park, Adelaide, South Australia 5042, Australia
| | - Munkhjargal Bat-Erdene
- School of Chemical and Physical Sciences, Flinders University , Bedford Park, Adelaide, South Australia 5042, Australia
| | - Mark J Biggs
- School of Chemical Engineering, The University of Adelaide , Adelaide, South Australia 5005, Australia
- School of Science, Loughborough University , Loughborough, Leicestershire LE11 3TU, U.K
| | - Joseph G Shapter
- School of Chemical and Physical Sciences, Flinders University , Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
8
|
Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1601694. [PMID: 28220969 DOI: 10.1002/adma.201601694] [Citation(s) in RCA: 1334] [Impact Index Per Article: 190.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/04/2016] [Indexed: 05/20/2023]
Abstract
Semiconductor-based photocatalysis attracts wide attention because of its ability to directly utilize solar energy for production of solar fuels, such as hydrogen and hydrocarbon fuels and for degradation of various pollutants. However, the efficiency of photocatalytic reactions remains low due to the fast electron-hole recombination and low light utilization. Therefore, enormous efforts have been undertaken to solve these problems. Particularly, properly engineered heterojunction photocatalysts are shown to be able to possess higher photocatalytic activity because of spatial separation of photogenerated electron-hole pairs. Here, the basic principles of various heterojunction photocatalysts are systematically discussed. Recent efforts toward the development of heterojunction photocatalysts for various photocatalytic applications are also presented and appraised. Finally, a brief summary and perspectives on the challenges and future directions in the area of heterojunction photocatalysts are also provided.
Collapse
Affiliation(s)
- Jingxiang Low
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed A Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
9
|
Batmunkh M, Macdonald TJ, Shearer CJ, Bat‐Erdene M, Wang Y, Biggs MJ, Parkin IP, Nann T, Shapter JG. Carbon Nanotubes in TiO 2 Nanofiber Photoelectrodes for High-Performance Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600504. [PMID: 28435781 PMCID: PMC5396161 DOI: 10.1002/advs.201600504] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 05/29/2023]
Abstract
1D semiconducting oxides are unique structures that have been widely used for photovoltaic (PV) devices due to their capability to provide a direct pathway for charge transport. In addition, carbon nanotubes (CNTs) have played multifunctional roles in a range of PV cells because of their fascinating properties. Herein, the influence of CNTs on the PV performance of 1D titanium dioxide nanofiber (TiO2 NF) photoelectrode perovskite solar cells (PSCs) is systematically explored. Among the different types of CNTs, single-walled CNTs (SWCNTs) incorporated in the TiO2 NF photoelectrode PSCs show a significant enhancement (≈40%) in the power conversion efficiency (PCE) as compared to control cells. SWCNTs incorporated in TiO2 NFs provide a fast electron transfer within the photoelectrode, resulting in an increase in the short-circuit current (Jsc) value. On the basis of our theoretical calculations, the improved open-circuit voltage (Voc) of the cells can be attributed to a shift in energy level of the photoelectrodes after the introduction of SWCNTs. Furthermore, it is found that the incorporation of SWCNTs into TiO2 NFs reduces the hysteresis effect and improves the stability of the PSC devices. In this study, the best performing PSC device constructed with SWCNT structures achieves a PCE of 14.03%.
Collapse
Affiliation(s)
- Munkhbayar Batmunkh
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- School of Chemical and Physical SciencesFlinders UniversityBedford Park, AdelaideSouth Australia5042Australia
| | | | - Cameron J. Shearer
- School of Chemical and Physical SciencesFlinders UniversityBedford Park, AdelaideSouth Australia5042Australia
| | - Munkhjargal Bat‐Erdene
- School of Chemical and Physical SciencesFlinders UniversityBedford Park, AdelaideSouth Australia5042Australia
| | - Yun Wang
- Centre for Clean Environment and EnergyGriffith School of EnvironmentGold Coast CampusGriffith UniversityQueensland4222Australia
| | - Mark J. Biggs
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- School of ScienceLoughborough UniversityLoughboroughLECLE11 3TUUK
| | - Ivan P. Parkin
- Department of ChemistryUniversity College LondonWC1H OAJLondonUK
| | - Thomas Nann
- MacDiarmid Institute for Advanced Materials and NanotechnologySchool of Chemical and Physical SciencesVictoria University of Wellington6140WellingtonNew Zealand
| | - Joseph G. Shapter
- School of Chemical and Physical SciencesFlinders UniversityBedford Park, AdelaideSouth Australia5042Australia
| |
Collapse
|
10
|
Batmunkh M, Bat-Erdene M, Shapter JG. Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8586-8617. [PMID: 27435365 DOI: 10.1002/adma.201602254] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/03/2016] [Indexed: 05/23/2023]
Abstract
Phosphorene, a single- or few-layered semiconductor material obtained from black phosphorus, has recently been introduced as a new member of the family of two-dimensional (2D) layered materials. Since its discovery, phosphorene has attracted significant attention, and due to its unique properties, is a promising material for many applications including transistors, batteries and photovoltaics (PV). However, based on the current progress in phosphorene production, it is clear that a lot remains to be explored before this material can be used for these applications. After providing a comprehensive overview of recent advancements in phosphorene synthesis, advantages and challenges of the currently available methods for phosphorene production are discussed. An overview of the research progress in the use of phosphorene for a wide range of applications is presented, with a focus on enabling important roles that phosphorene would play in next-generation PV cells. Roadmaps that have the potential to address some of the challenges in phosphorene research are examined because it is clear that the unprecedented chemical, physical and electronic properties of phosphorene and phosphorene-based materials are suitable for various applications, including photovoltaics.
Collapse
Affiliation(s)
- Munkhbayar Batmunkh
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Munkhjargal Bat-Erdene
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Joseph G Shapter
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia.
| |
Collapse
|
11
|
Bandosz TJ. Nanoporous Carbons: Looking Beyond Their Perception as Adsorbents, Catalyst Supports and Supercapacitors. CHEM REC 2015; 16:205-18. [PMID: 26663696 DOI: 10.1002/tcr.201500231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 01/19/2023]
Abstract
The discovery of carbon nanoforms, and especially graphene, has opened up new directions of science and technology. Many applications are based on the unique properties of graphene, such as its high electrical and thermal conductivity, strength, flexibility, photoactivity and transparency. Inspired by the emerging graphene science, we directed our efforts to the exploration of new applications of nanoporous (microporous) carbons. Their matrix is built of distorted graphene layers, between which pores with sizes ranging from a fraction of a nanometer to hundreds of nanometers exist. This is a very unique feature of nanoporous carbons resulting in their developed surface areas. Moreover, there are vast possibilities to modify the surface chemistry of carbons and thus their surface properties. Even though the traditional applications of porous carbons focus mainly on adsorption and separation, we decided to explore them as photocatalysts, oxygen reduction catalysts and sensors. Related to their visible-light activity, their possible application in solar energy harvesting is also indicated. This Personal Account presents our paths leading to the exploration of these directions, describing the results collected and difficulties encountered, along with the challenges remaining to be addressed.
Collapse
Affiliation(s)
- Teresa J Bandosz
- Department of Chemistry, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| |
Collapse
|
12
|
Batmunkh M, Biggs MJ, Shapter JG. Carbon Nanotubes for Dye-Sensitized Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2963-2989. [PMID: 25864907 DOI: 10.1002/smll.201403155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 02/05/2015] [Indexed: 06/04/2023]
Abstract
As one type of emerging photovoltaic cell, dye-sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco-friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light-harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided.
Collapse
Affiliation(s)
- Munkhbayar Batmunkh
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Mark J Biggs
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- School of Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Joseph G Shapter
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| |
Collapse
|