1
|
Zhang T, Ma Y, Zhang Y. A simple electrochemical strategy for the detection of the cancer marker CA19-9 by signal amplification using copper organic framework nanocomposite. Analyst 2023; 148:5905-5914. [PMID: 37855742 DOI: 10.1039/d3an01511d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this work, label-free electrochemical immunosensing of the cancer biomarker carbohydrate antigen 19-9 (CA19-9) is reported using [Fe(CN)6]3-/4- as a signal probe and a copper organic framework (Cu-BTC) nanocomposite for the amplification of the signal. The immunosensor was fabricated by the following process. First, the Cu-BTC nanomaterial with a larger surface area and good biocompatibility was synthesized to improve the dispersion of gold nanoparticles (Au NPs). Then, nitrogen-doped graphene (N-GR) was combined with Cu-BTC to form the nanocomposite. The synthesized Cu-BTC@N-GR@AuNPs@CS nanocomposite was employed to modify the surface of the immunosensor to accelerate the electron transfer rate and improve the immobilization amount of CA19-9 antibodies (Ab). Various techniques, including TEM, SEM and XPS were used to characterize Cu-BTC and nanocomposites. Differential pulse voltammetry (DPV) was used to measure the electrochemical response of the immunosensor in [Fe(CN)6]3-/4-. The signal intensity of the immunosensor was linearly changed upon increasing the concentration of CA19-9 antigen from 10 μU mL-1 to 100 U mL-1, and a detection limit of 4.2 μU mL-1 was achieved. Furthermore, the immunosensor showed good stability, reproducibility and specificity, indicating its potential application in clinical analysis.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| | - Yan Ma
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| |
Collapse
|
2
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
3
|
Sun G, Ren Y, Song Y, Xie Y, Zhang H, Sun L. Achieving Photon Upconversion in Mononuclear Lanthanide Molecular Complexes at Room Temperature. J Phys Chem Lett 2022; 13:8509-8515. [PMID: 36066905 DOI: 10.1021/acs.jpclett.2c02135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photon upconversion luminescence at the molecule scale is a rarely observed phenomenon despite possessing colossal potential for basic research and reality applications. Here we show that the eight-coordinate erbium molecular complex composed of Er3+ ion, dibenzoylmethane, and 2,2'-bipyridine exhibits upconversion emission. Under direct excitation at the absorption band of Er3+ ion at 980 nm, the complex shows upconverted green emissions of Er3+ ion at 525 and 545 nm at room temperature. Noticeably, upon the introduction of fluoride ions into this complex, an additional upconverted red emission at 667 nm appears as well, and the luminescence intensities of both the green and red emissions increase by a factor of 13 at most. This study not only provides a strategy to adjust the green and red emissions in mononuclear erbium complexes but also broadens the horizons of designing lanthanide-based molecular upconversion systems.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yuan Ren
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China
| | - Yapai Song
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yao Xie
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209378. [DOI: 10.1002/anie.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyan Zhu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Xiaohan Wang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
5
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyan Zhu
- Fudan University chemistry department Room 631, Advanced materials lab,2205 songhu road, yangpu district,Shanghai 200438 Shanghai CHINA
| | | | | | - Fan Zhang
- Fudan University Chemistry 2205 Songhu Road 200438 Shanghai CHINA
| |
Collapse
|
6
|
Autofluorescence free detection of carcinoembryonic antigen in pleural effusion by persistent luminescence nanoparticle-based aptasensors. Anal Chim Acta 2022; 1194:339408. [DOI: 10.1016/j.aca.2021.339408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/14/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
|
7
|
Dye Sensitization for Ultraviolet Upconversion Enhancement. NANOMATERIALS 2021; 11:nano11113114. [PMID: 34835876 PMCID: PMC8623389 DOI: 10.3390/nano11113114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Upconversion nanocrystals that converted near-infrared radiation into emission in the ultraviolet spectral region offer many exciting opportunities for drug release, photocatalysis, photodynamic therapy, and solid-state lasing. However, a key challenge is the development of lanthanide-doped nanocrystals with efficient ultraviolet emission, due to low conversion efficiency. Here, we develop a dye-sensitized, heterogeneous core–multishelled lanthanide nanoparticle for ultraviolet upconversion enhancement. We systematically study the main influencing factors on ultraviolet upconversion emission, including dye concentration, excitation wavelength, and dye-sensitizer distance. Interestingly, our experimental results demonstrate a largely promoted multiphoton upconversion. The underlying mechanism and detailed energy transfer pathway are illustrated. These findings offer insights into future developments of highly ultraviolet-emissive nanohybrids and provide more opportunities for applications in photo-catalysis, biomedicine, and environmental science.
Collapse
|
8
|
Weng T, Zou Q, Zhang M, Wu B, Baryshnikov GV, Shen S, Chen X, Ågren H, Jia X, Zhu L. Enhancing the Operability of Photoexcitation-Controlled Aggregation-Induced Emissive Molecules in the Organic Phase. J Phys Chem Lett 2021; 12:6182-6189. [PMID: 34185524 DOI: 10.1021/acs.jpclett.1c01535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controllable aggregation-induced emission luminogens (AIEgens) by photoexcitation can be conducted within a single solvent, thus opening new opportunities for preparing and processing smart materials. However, undesired side-reactions like photooxidation that can easily occur in the organic phase remain, limiting their applications. To enhance the operability of photoexcitation-controlled AIEgens (to specifically produce a phosphorescence characteristic) in the organic phase, in this work, we employ a typical prototype, hexathiobenzene, usually as the specific phosphorescent group, and investigate a series of physical and chemical factors, such as light intensity, dissolved oxygen content, and solvent polarity, to explore ways to control the photoexcitation-controllable AIEgens against the impurities from side-reactions. An organogel strategy was also developed to minimize interference factors and improve the practical application ability. We believe that the presented results provide new insights into the further development of the photoexcitation-based functional materials and the promotion of their practical usage.
Collapse
Affiliation(s)
- Taoyu Weng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xuanying Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Henan Center for Outstanding Overseas Scientists, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xiaoyong Jia
- Henan Center for Outstanding Overseas Scientists, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Liu Q, Zhong Y, Su Y, Zhao L, Peng J. Real-Time Imaging of Hepatic Inflammation Using Hydrogen Sulfide-Activatable Second Near-Infrared Luminescent Nanoprobes. NANO LETTERS 2021; 21:4606-4614. [PMID: 34014668 DOI: 10.1021/acs.nanolett.1c00548] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sensing and visualized monitoring of hydrogen sulfide (H2S) in vivo is crucial to understand its physiological and pathological roles in human health and diseases. Common methods for H2S detection require the destruction of the biosamples and are not suitable to be applied in vivo. In this Communication, we report a "turn-on" second near-infrared (NIR-II) luminescent approach for sensitive, real-time, and in situ H2S detection, which is based on the absorption competition between the H2S-responsive chromophores (compound 1) and the NIR-II luminescent lanthanide nanoparticles. Specifically, the luminescence was suppressed by compound 1 due to the competitive absorption of the incident light. In the presence of H2S, the compound 1 was bleached to recover the luminescence. Thanks to the deep tissue penetration depth and the low absorbance/scattering on biological samples of the NIR-II nanoprobes, the monitoring of the endogenous H2S in lipopolysaccharide-induced liver inflammation was achieved, which is unattainable by the conventional histopathological and serological approaches.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yang Zhong
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
10
|
Okubo K, Takeda R, Murayama S, Umezawa M, Kamimura M, Osada K, Aoki I, Soga K. Size-controlled bimodal in vivo nanoprobes as near-infrared phosphors and positive contrast agents for magnetic resonance imaging. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:160-172. [PMID: 33762891 PMCID: PMC7952065 DOI: 10.1080/14686996.2021.1887712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Rare-earth-doped nanoparticles (NPs), such as NaGdF4 nanocrystals doped with light-emitting rare earth ions, are promising bimodal probes that allow the integration of over 1000 nm near-infrared (OTN-NIR; NIR-II/III) fluorescence imaging and magnetic resonance imaging (MRI) of live bodies. A precise control of the particle size is the key factor for achieving a high signal-to-noise ratio in both NIR fluorescence and MR images and for regulating their function in the body. In this study, size-controlled NaGdF4:Yb3+, Er3+ NPs prepared by stepwise crystal growth were used for in vivo bimodal imaging. Hexagonal NaGdF4:Yb3+,Er3+ NPs coated with poly(ethylene glycol)-poly(acrylic acid) block copolymer, with hydrodynamic diameters of 15 and 45 nm, were prepared and evaluated as bimodal NPs for OTN-NIR fluorescence imaging and MRI. Their longitudinal (T 1) and transverse (T 2) relaxation rates at the static magnetic field strength of 1.0 T, as well as their cytotoxicity towards NIH3T3 cell lines, were evaluated and compared to study the effect of size. Using these particles, blood vessel visualization was achieved by MRI, with the highest relaxometric ratio (r 1/r 2) of 0.79 reported to date for NaGdF4-based nanoprobes (r 1 = 19.78 mM-1 s-1), and by OTN-NIR fluorescence imaging. The results clearly demonstrate the potential of the size-controlled PEG-modified NaGdF4:Yb3+,Er3+ NPs as powerful 'positive' T 1-weight contrast MRI agents and OTN-NIR fluorophores.
Collapse
Affiliation(s)
- Kyohei Okubo
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryuta Takeda
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shuhei Murayama
- Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masao Kamimura
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kensuke Osada
- Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Ichio Aoki
- Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
11
|
Adusumalli VNKB, Mrówczyńska L, Kwiatek D, Piosik Ł, Lesicki A, Lis S. Ligand-Sensitised LaF 3 :Eu 3+ and SrF 2 :Eu 3+ Nanoparticles and in Vitro Haemocompatiblity Studies. ChemMedChem 2021; 16:1640-1650. [PMID: 33527762 DOI: 10.1002/cmdc.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Luminescent Ln3+ -doped nanoparticles (NPs) functionalised with the desired organic ligand molecules for haemocompatibility studies were obtained in a one-pot synthesis. Chelated aromatic organic ligands such as isophthalic acid, terephthalic acid, ibuprofen, aspirin, 1,2,4,5-benzenetetracarboxylic acid, 2,6-pyridine dicarboxylic acid and adenosine were applied for surface functionalisation. The modification of the nanoparticles is based on the donor-acceptor character of the ligand-nanoparticle system, which is an alternative to covalent functionalisation by peptide bonding as presented in our recent report. The aromatic groups of selected ligands absorb UV light and transfer their excited-state energy to the dopant Eu3+ ions in LaF3 and SrF2 NPs. Herein, we discuss the structural and spectroscopic characterisation of the NPs and the results of haemocompatibility studies. Flow cytometry analysis of the nanoparticles' membrane-binding is also presented.
Collapse
Affiliation(s)
- Venkata N K B Adusumalli
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Dorota Kwiatek
- Department of Molecular Probes and Prodrugs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Łukasz Piosik
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
12
|
Sharafeldin M, Kadimisetty K, Bhalerao KS, Chen T, Rusling JF. 3D-Printed Immunosensor Arrays for Cancer Diagnostics. SENSORS 2020; 20:s20164514. [PMID: 32806676 PMCID: PMC7472114 DOI: 10.3390/s20164514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Detecting cancer at an early stage of disease progression promises better treatment outcomes and longer lifespans for cancer survivors. Research has been directed towards the development of accessible and highly sensitive cancer diagnostic tools, many of which rely on protein biomarkers and biomarker panels which are overexpressed in body fluids and associated with different types of cancer. Protein biomarker detection for point-of-care (POC) use requires the development of sensitive, noninvasive liquid biopsy cancer diagnostics that overcome the limitations and low sensitivities associated with current dependence upon imaging and invasive biopsies. Among many endeavors to produce user-friendly, semi-automated, and sensitive protein biomarker sensors, 3D printing is rapidly becoming an important contemporary tool for achieving these goals. Supported by the widely available selection of affordable desktop 3D printers and diverse printing options, 3D printing is becoming a standard tool for developing low-cost immunosensors that can also be used to make final commercial products. In the last few years, 3D printing platforms have been used to produce complex sensor devices with high resolution, tailored towards researchers’ and clinicians’ needs and limited only by their imagination. Unlike traditional subtractive manufacturing, 3D printing, also known as additive manufacturing, has drastically reduced the time of sensor and sensor array development while offering excellent sensitivity at a fraction of the cost of conventional technologies such as photolithography. In this review, we offer a comprehensive description of 3D printing techniques commonly used to develop immunosensors, arrays, and microfluidic arrays. In addition, recent applications utilizing 3D printing in immunosensors integrated with different signal transduction strategies are described. These applications include electrochemical, chemiluminescent (CL), and electrochemiluminescent (ECL) 3D-printed immunosensors. Finally, we discuss current challenges and limitations associated with available 3D printing technology and future directions of this field.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Suite 100, Malvern, PA 19355, USA;
| | - Ketki S. Bhalerao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Tianqi Chen
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, CT 06032, USA
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
- Correspondence:
| |
Collapse
|
13
|
Ma C, Zhao C, Li W, Song Y, Hong C, Qiao X. Sandwich-type electrochemical immunosensor constructed using three-dimensional lamellar stacked CoS 2@C hollow nanotubes prepared by template-free method to detect carcinoembryonic antigen. Anal Chim Acta 2019; 1088:54-62. [PMID: 31623716 DOI: 10.1016/j.aca.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 01/01/2023]
Abstract
Effective treatment of cancer depends on early detection of tumor markers. In this paper, an effective template-free method was used to prepare CoS2@C three-dimensional hollow sheet nanotubes as the matrix of the immunosensor. The unique three-dimensional hybrid hollow tubular nanostructure provides greater contact area and enhanced detection limit. The CoS2@C-NH2-HRP nanomaterial was synthesized as a marker and had a high specific surface area, which can effectively improve the electrocatalytic ability of hydrogen peroxide (H2O2) reduction while increasing the amount of capture-fixed carcinoembryonic antigen antibody (anti-CEA). In addition, the co-bonded horseradish peroxidase (HRP) can further promote the redox of H2O2 and amplify the electrical signal. Carcinoembryonic antigen (CEA) was quantified by immediate current response (i-t), and the prepared immunosensor had good analytical performance under optimized conditions. The current signal and the concentration of CEA were linear in the range of 0.001-80 ng/mL, and the detection limit was 0.33 pg/mL (S/N = 3). The designed immunosensor has good selectivity, repeatability and stability, and the detection of human serum samples shows good performance. Furthermore, electrochemical immunosensor has broad application prospects in the clinical diagnosis of CEA.
Collapse
Affiliation(s)
- Chaoyun Ma
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chulei Zhao
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Wenjun Li
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Yiju Song
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chenglin Hong
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| | - Xiuwen Qiao
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| |
Collapse
|
14
|
Du B, Tang C, Zhao D, Zhang H, Yu D, Yu M, Balram KC, Gersen H, Yang B, Cao W, Gu C, Besenbacher F, Li J, Sun Y. Diameter-optimized high-order waveguide nanorods for fluorescence enhancement applied in ultrasensitive bioassays. NANOSCALE 2019; 11:14322-14329. [PMID: 31323078 DOI: 10.1039/c9nr02330e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Development of fluorescence enhancement (FE) platforms based on ZnO nanorods (NRs) has sparked considerable interest, thanks to their well-demonstrated potential in chemical and biological detection. Among the multiple factors determining the FE performance, high-order waveguide modes are specifically promising in boosting the sensitivity and realizing selective detection. However, quantitative experimental studies on the influence of the NR diameter, substrate, and surrounding medium, on the waveguide-based FE properties remain lacking. In this work, we have designed and fabricated a FE platform based on patterned and well-defined arrays of vertical, hexagonal prism ZnO NRs with six distinct diameters. Both direct experimental evidence and theoretical simulations demonstrate that high-order waveguide modes play a crucial role in FE, and are strongly dependent on the NR diameter, substrate, and surrounding medium. Using the optimized FE platform, a significant limit of detection (LOD) of 10-16 mol L-1 for Rhodamine-6G probe detection is achieved. Especially, a LOD as low as 10-14 g mL-1 is demonstrated for a prototype biomarker of carcinoembryonic antigen, which is improved by one order compared with the best LOD ever reported using fluorescence-based detection. This work provides an efficient path to design waveguiding NRs-based biochips for ultrasensitive and highly-selective biosensing.
Collapse
Affiliation(s)
- Baosheng Du
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li YN, Zhao D, Zhang RJ, Li FF, Shi LY, Yao QX, Han XY, Cui XQ. A new diphosphate Ba2LiGa(P2O7)2: synthesis, crystal structure and Eu3+-activated fluorescence performance. Dalton Trans 2019; 48:13780-13788. [DOI: 10.1039/c9dt03105g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This work presents a new diphosphate Ba2LiGa(P2O7)2 with an anionic [LiGa(P2O7)2]∞ framework that is constructed from P2O7, LiO5 and GaO6 groups. Eu3+-doped Ba2−xLiGa(P2O7)2:xEu3+ (x = 0.05–0.3) samples show intense red photoluminescence emission.
Collapse
Affiliation(s)
- Y. N. Li
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - D. Zhao
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - R. J. Zhang
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - F. F. Li
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - L. Y. Shi
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Q. X. Yao
- School of Chemistry and Chemical Engineering
- and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology
- Liaocheng University
- Liaocheng
- China
| | - X. Y. Han
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - X. Q. Cui
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| |
Collapse
|
16
|
Zhou J, Leaño JL, Liu Z, Jin D, Wong KL, Liu RS, Bünzli JCG. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801882. [PMID: 30066496 DOI: 10.1002/smll.201801882] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/16/2018] [Indexed: 05/22/2023]
Abstract
Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide-doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface-to-volume ratios and quantum confinement that are typical of nanoobjects. Cutting-edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next-generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro-/nanoscopic techniques, point-of-care medical testing, forensic fingerprints detection, to micro-LED devices.
Collapse
Affiliation(s)
- Jiajia Zhou
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Julius L Leaño
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica and NTU, Taipei, 106, Taiwan
- Philippine Textile Research Institute, Department of Science and Technology, Taguig City, 1631, Philippines
| | - Zhenyu Liu
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, P. R. China
| | - Dayong Jin
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Jean-Claude G Bünzli
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
- Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland
| |
Collapse
|
17
|
Wang J, Deng R. Energy Transfer in Dye-Coupled Lanthanide-Doped Nanoparticles: From Design to Application. Chem Asian J 2018; 13:614-625. [DOI: 10.1002/asia.201701817] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Juan Wang
- Institute of Environmental Health; College of Environment and Resources Science; Zhejiang University; Hangzhou 310058 P.R. China
| | - Renren Deng
- Institute for Composites Science Innovation; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| |
Collapse
|
18
|
Jia H, Zhou Y, Li X, Li Y, Zhang W, Fu H, Zhao J, Pan L, Liu X, Qiu J. Synthesis and phase transformation of NaGdF 4:Yb–Er thin films using electro-deposition method at moderate temperatures. CrystEngComm 2018. [DOI: 10.1039/c8ce01340c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, a thin film of hexagonal-phase NaGdF4:Yb–Er is fabricated by electro-deposition at moderate temperatures. The phase of NaGdF4:Yb–Er thin film can be controlled by adding PVP in the electrolyte.
Collapse
Affiliation(s)
- Hong Jia
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection
- Luoyang Normal University
- Luoyang 471934
- China
| | - Yiping Zhou
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection
- Luoyang Normal University
- Luoyang 471934
- China
| | - Xue Li
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection
- Luoyang Normal University
- Luoyang 471934
- China
| | - Yan Li
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection
- Luoyang Normal University
- Luoyang 471934
- China
| | - Weiying Zhang
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection
- Luoyang Normal University
- Luoyang 471934
- China
| | - Hongzhi Fu
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection
- Luoyang Normal University
- Luoyang 471934
- China
| | - Jianguo Zhao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection
- Luoyang Normal University
- Luoyang 471934
- China
| | - Liuzhan Pan
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection
- Luoyang Normal University
- Luoyang 471934
- China
| | - Xiaofeng Liu
- State Key Laboratory of Silicon Materials
- Department of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jianrong Qiu
- State Key Laboratory of Silicon Materials
- Department of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
19
|
Zhou Z, Zheng W, Kong J, Liu Y, Huang P, Zhou S, Chen Z, Shi J, Chen X. Rechargeable and LED-activated ZnGa 2O 4 : Cr 3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. NANOSCALE 2017; 9:6846-6853. [PMID: 28497817 DOI: 10.1039/c7nr01209h] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) have shown great promise in the field of biomedicine, but are currently limited by the challenge in the synthesis of high-quality PLNPs with bright persistent luminescence and a long afterglow time. Herein, we report a facile strategy for the synthesis of monodisperse, rechargeable and LED-activated ZnGa2O4 : Cr3+ near-infrared (NIR) PLNPs based on a modified solvothermal liquid-solid-solution method. The as-synthesized PLNPs are not only flexible for bioconjugation, but could also circumvent the limitation of the weak persistent luminescence and short afterglow time that most PLNPs confronted owing to their rechargeable capability. It was unraveled that both thermal activation and quantum tunneling mechanisms contributed to the afterglow decay of the PLNPs, and the quantum tunneling was found to dictate the LED-activated afterglow intensity and lasting time. Furthermore, by utilizing the superior excitation-free persistent luminescence, we demonstrated for the first time the application of biotinylated ZnGa2O4 : Cr3+ PLNPs as background-free luminescent nano-bioprobes for sensitive and specific detection of avidin in a heterogeneous assay with a limit of detection down to ∼150 pM, thus revealing the great potential of these NIR PLNPs in ultrasensitive biodetection and bioimaging.
Collapse
Affiliation(s)
- Zhihao Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang J, Ma Q, Wang Y, Shen H, Yuan Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. NANOSCALE 2017; 9:6204-6218. [PMID: 28466913 DOI: 10.1039/c7nr01488k] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) are an emerging group of promising luminescent materials that can remain luminescent after the excitation ceases. In the past decade, PLNPs with intriguing optical properties have been developed and their applications in biomedicine have been widely studied. Due to the ultra-long decay time of persistent luminescence, autofluorescence interference in biosensing and bioimaging can be efficiently eliminated. Moreover, PLNPs can remain luminescent for hours, making them valuable in bio-tracing. Also, persistent luminescence imaging can guide cancer therapy with a high signal-to-noise ratio (SNR) and superior sensitivity. Briefly, PLNPs are demonstrated to be a newly-emerging class of functional materials with unprecedented advantages in biomedicine. In this review, we summarized recent advances in the preparation of PLNPs and the applications of PLNPs in biosensing, bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | | | | | | | | |
Collapse
|