1
|
Xia Y, Wang L, Gao G, Mao T, Wang Z, Jin X, Hong Z, Han J, Peng DL, Yue G. Constructed Mott-Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O 2 Battery. NANO-MICRO LETTERS 2024; 16:258. [PMID: 39073728 PMCID: PMC11286616 DOI: 10.1007/s40820-024-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Lithium-oxygen batteries (LOBs) with high energy density are a promising advanced energy storage technology. However, the slow cathodic redox kinetics during cycling causes the discharge products to fail to decompose in time, resulting in large polarization and battery failure in a short time. Therefore, a self-supporting interconnected nanosheet array network NiCo2O4/MnO2 with a Mott-Schottky heterostructure on titanium paper (TP-NCO/MO) is ingeniously designed as an efficient cathode catalyst material for LOBs. This heterostructure can accelerate electron transfer and influence the charge transfer process during adsorption of intermediate by triggering the interface disturbance at the heterogeneous interface, thus accelerating oxygen reduction and oxygen evolution kinetics and regulating product decomposition, which is expected to solve the above problems. The meticulously designed unique structural advantages enable the TP-NCO/MO cathode catalyst to exhibit an astounding ultra-long cycle life of 800 cycles and an extraordinarily low overpotential of 0.73 V. This study utilizes a simple method to cleverly regulate the morphology of the discharge products by constructing a Mott-Schottky heterostructure, providing important reference for the design of efficient catalysts aimed at optimizing the adsorption of reaction intermediates.
Collapse
Affiliation(s)
- Yongji Xia
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Le Wang
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Guiyang Gao
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tianle Mao
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhenjia Wang
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xuefeng Jin
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zheyu Hong
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jiajia Han
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Dong-Liang Peng
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Guanghui Yue
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
2
|
Sun Z, Zhao X, Qiu W, Sun B, Bai F, Liu J, Zhang T. Unlock Restricted Capacity via OCe Hybridization for LiOxygen Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210867. [PMID: 36691313 DOI: 10.1002/adma.202210867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The aprotic Li-O2 battery (LOB) has the highest theoretical energy density of any rechargeable batteries. However, such system is largely restricted by the electrochemically formed lithium peroxide (Li2 O2 ) on the cathode surface, leading ultimately to low actual capacities and early cell death. In contrast to the surface-mediated growth of thin film with a thickness <50 nm, a non-crystalline Li2 O2 film with a thickness of >400 nm can be formed via an optimal OCe hybridized electronic structure. Specially, oxygen can react with dissolved cerium cations in the electrolyte via a cerium-oxygen reaction to form a high-energy faceted cerium oxide catalyst, which not only generates a great number of non-saturable active sites, but also erects electron transport bridges between the lattice O and adjacent Ce atoms. Such CeO orbital hybridization also forms a direct charge transfer channel from Ce-4f of CeO2 to O 2 2 - ${\rm{O}}_2^{2 - }$ -π* of Li2 O2 , eventually leading to submicron-thick Li2 O2 shells via a subsequent lithium-oxygen reaction. Relying on the above merits, this work unlocks the rechargeable capacities of LOB from restricted 1000 to unprecedented 10 000 mAh g-1 with good cyclabilities and reduced charge-discharge overpotentials.
Collapse
Affiliation(s)
- Zhuang Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Tai'an Institute of Industrial Technology Innovation-Shandong Institutes of Industrial Technology Tai'an Branch, 28 Zhengyangmen Road, Taian, 271000, P. R. China
| | - Xiaohui Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, P. R. China
| | - Fan Bai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Tao Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Tai'an Institute of Industrial Technology Innovation-Shandong Institutes of Industrial Technology Tai'an Branch, 28 Zhengyangmen Road, Taian, 271000, P. R. China
| |
Collapse
|
3
|
Li C, Choi PG, Masuda Y. Highly Sensitive and Selective Gas Sensors Based on NiO/MnO 2 @NiO Nanosheets to Detect Allyl Mercaptan Gas Released by Humans under Psychological Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202442. [PMID: 35839470 PMCID: PMC9507369 DOI: 10.1002/advs.202202442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Indexed: 05/26/2023]
Abstract
NiO nanosheets are synthesized in situ on gas sensor chips using a facile solvothermal method. These NiO nanosheets are then used as gas sensors to analyze allyl mercaptan (AM) gas, an exhaled biomarker of psychological stress. Additionally, MnO2 nanosheets are synthesized onto the surfaces of the NiO nanosheets to enhance the gas-sensing performance. The gas-sensing response of the NiO nanosheet sensor is higher than that of the MnO2 @NiO nanosheet sensor. The response value can reach 56.69, when the NiO nanosheet sensor detects 40 ppm AM gas. Interestingly, a faster response time (115 s) is obtained when the MnO2 @NiO nanosheet sensor is exposed to 40 ppm of AM gas. Moreover, the selectivity toward AM gas is about 17-37 times greater than those toward confounders. The mechanism of gas sensing and the factors contributing to the enhance gas response of the NiO and MnO2 @NiO nanosheets are discussed. The products of AM gas oxidized by the gas sensor are identified by gas chromatography-mass spectrometry (GC/MS). AM gas detection is an unprecedented application for semiconductor metal oxides. From a broader perspective, the developed sensors represent a new platform for the identification and monitoring of gases released by humans under psychological stress, which is increasing in modern life.
Collapse
Affiliation(s)
- Chunyan Li
- National Institute of Advanced Industrial Science and Technology (AIST)2266‐98 Anagahora, Shimoshidami, MoriyamaNagoya463‐8560Japan
| | - Pil Gyu Choi
- National Institute of Advanced Industrial Science and Technology (AIST)2266‐98 Anagahora, Shimoshidami, MoriyamaNagoya463‐8560Japan
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology (AIST)2266‐98 Anagahora, Shimoshidami, MoriyamaNagoya463‐8560Japan
| |
Collapse
|
4
|
Restriction of voltage decay by limiting low-voltage reduction in Li-rich oxide materials. J Colloid Interface Sci 2022; 620:57-66. [DOI: 10.1016/j.jcis.2022.03.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
|
5
|
Guo T, Chen L, Li Y, Shen K. Controllable Synthesis of Ultrathin Defect-Rich LDH Nanoarrays Coupled with MOF-Derived Co-NC Microarrays for Efficient Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107739. [PMID: 35754167 DOI: 10.1002/smll.202107739] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Water electrolysis has attracted immense research interest, nevertheless the lack of low-cost but efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reactions greatly hinders its commercial applications. Herein, the controllable synthesis of ultrathin defect-rich layered double hydroxide (LDH) nanoarrays assembled on metal-organic framework (MOF)-derived Co-NC microarrays for boosting overall water splitting is reported. The Co-NC microarrays can not only provide abundant nucleation sites to produce a large number of LDH nuclei for favoring the growth of ultrathin LDHs, but also help to inhibit their tendency to aggregate. Impressively, five types of ultrathin bimetallic LDH nanoarrays can be electrodeposited on the Co-NC microarrays, forming desirable nanoarray-on-macroarray architectures, which show high uniformity with thicknesses from 1.5 to 1.9 nm. As expected, the electrocatalytic performance is significantly enhanced by exploiting the respective advantages of Co-NC microarrays and ultrathin LDH nanoarrays as well as the potential synergies between them. Especially, the optimal Co-NC@Ni2 Fe-LDH as both cathode and anode can afford the lowest cell voltage of 1.55 V at 10 mA cm-2 , making it one of the best earth-abundant bifunctional electrocatalysts for water electrolysis. This study provides new insights into the rational design of highly-active and low-cost electrocatalysts and facilitates their promising applications in the fields of energy storage and conversion.
Collapse
Affiliation(s)
- Tongtian Guo
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
6
|
Wu Y, Ding H, Yang T, Xia Y, Zheng H, Wei Q, Han, J, Peng D, Yue G. Composite NiCo 2 O 4 @CeO 2 Microsphere as Cathode Catalyst for High-Performance Lithium-Oxygen Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200523. [PMID: 35475326 PMCID: PMC9189671 DOI: 10.1002/advs.202200523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/27/2022] [Indexed: 05/06/2023]
Abstract
The large overpotential and poor cycle stability caused by inactive redox reactions are tough challenges for lithium-oxygen batteries (LOBs). Here, a composite microsphere material comprising NiCo2 O4 @CeO2 is synthesized via a hydrothermal approach followed by an annealing processing, which is acted as a high performance electrocatalyst for LOBs. The unique microstructured catalyst can provide enough catalytic surface to facilitate the barrier-free transport of oxygen as well as lithium ions. In addition, the special microsphere and porous nanoneedles structure can effectively accelerate electrolyte penetration and the reversible formation and decomposition process of Li2 O2 , while the introduction of CeO2 can increase oxygen vacancies and optimize the electronic structure of NiCo2 O4 , thereby enhancing the electron transport of the whole electrode. This kind of catalytic cathode material can effectively reduce the overpotential to only 1.07 V with remarkable cycling stability of 400 loops under 500 mA g-1 . Based on the density functional theory calculations, the origin of the enhanced electrochemical performance of NiCo2 O4 @CeO2 is clarified from the perspective of electronic structure and reaction kinetics. This work demonstrates the high efficiency of NiCo2 O4 @CeO2 as an electrocatalyst and confirms the contribution of the current design concept to the development of LOBs cathode materials.
Collapse
Affiliation(s)
- Yuanhui Wu
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Haoran Ding
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Tianlun Yang
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Yongji Xia
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Hongfei Zheng
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Qiulong Wei
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Jiajia Han,
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Dong‐Liang Peng
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Guanghui Yue
- State Key Lab of Physical Chemistry of Solid SurfaceFujian Key Laboratory of Materials GenomeCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
7
|
Xia Q, Li D, Zhao L, Wang J, Long Y, Han X, Zhou Z, Liu Y, Zhang Y, Li Y, Adam AAA, Chou S. Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li-O 2 batteries. Chem Sci 2022; 13:2841-2856. [PMID: 35382475 PMCID: PMC8905958 DOI: 10.1039/d1sc05781b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Developing efficient energy storage and conversion applications is vital to address fossil energy depletion and global warming. Li-O2 batteries are one of the most promising devices because of their ultra-high energy density. To overcome their practical difficulties including low specific capacities, high overpotentials, limited rate capability and poor cycle stability, an intensive search for highly efficient electrocatalysts has been performed. Recently, it has been reported that heterostructured catalysts exhibit significantly enhanced activities toward the oxygen reduction reaction and oxygen evolution reaction, and their excellent performance is not only related to the catalyst materials themselves but also the special hetero-interfaces. Herein, an overview focused on the electrocatalytic functions of heterostructured catalysts for non-aqueous Li-O2 batteries is presented by summarizing recent research progress. Reduction mechanisms of Li-O2 batteries are first introduced, followed by a detailed discussion on the typical performance enhancement mechanisms of the heterostructured catalysts with different phases and heterointerfaces, and the various heterostructured catalysts applied in Li-O2 batteries are also intensively discussed. Finally, the existing problems and development perspectives on the heterostructure applications are presented.
Collapse
Affiliation(s)
- Qing Xia
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| | - Deyuan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Lanling Zhao
- School of Physics, Shandong University Jinan 250100 China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Yebing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Abulgasim Ahmed Abbaker Adam
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University Jinan 250061 China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 China
| |
Collapse
|
8
|
Liu L, Liu Y, Wang C, Peng X, Fang W, Hou Y, Wang J, Ye J, Wu Y. Li 2 O 2 Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li-O 2 Batteries. SMALL METHODS 2022; 6:e2101280. [PMID: 35041287 DOI: 10.1002/smtd.202101280] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Aprotic Li-O2 batteries are regarded as the most promising technology to resolve the energy crisis in the near future because of its high theoretical specific energy. The key electrochemistry of a nonaqueous Li-O2 battery highly relies on the formation of Li2 O2 during discharge and its reversible decomposition during charge. The properties of Li2 O2 and its formation mechanisms are of high significance in influencing the battery performance. This review article demonstrates the latest progress in understanding the Li2 O2 electrochemistry and the recent advances in regulating the Li2 O2 growth pathway. The first part of this review elaborates the Li2 O2 formation mechanism and its relationship with the oxygen reduction reaction/oxygen evolution reaction electrochemistry. The following part discusses how the cycling parameters, e.g., current density and discharge depth, influence the Li2 O2 morphology. A comprehensive summary of recent strategies in tailoring Li2 O2 formation including rational design of cathode structure, certain catalyst, and surface engineering is demonstrated. The influence resulted from the electrolyte, e.g., salt, solvent, and some additives on Li2 O2 growth pathway, is finally discussed. Further prospects of the ways in making advanced Li-O2 batteries by control of favorable Li2 O2 formation are highlighted, which are valuable for practical construction of aprotic lithium-oxygen batteries.
Collapse
Affiliation(s)
- Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihao Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Chen Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Xiaohui Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuyang Hou
- CSIRO Mineral Resources, Clayton, VIC, 3168, Australia
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, P. R. China
| | - Jilei Ye
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| |
Collapse
|
9
|
Lian Z, Lu Y, Wang C, Zhu X, Ma S, Li Z, Liu Q, Zang S. Single-Atom Ru Implanted on Co 3 O 4 Nanosheets as Efficient Dual-Catalyst for Li-CO 2 Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102550. [PMID: 34672110 PMCID: PMC8655220 DOI: 10.1002/advs.202102550] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Indexed: 05/19/2023]
Abstract
Li-CO2 battery has attracted extensive attention and research due to its super high theoretical energy density and its ability to fix greenhouse gas CO2 . However, the slow reaction kinetics during discharge/charge seriously limits its development. Hence, a simple cation exchange strategy is developed to introduce Ru atoms onto a Co3 O4 nanosheet array grown on carbon cloth (SA Ru-Co3 O4 /CC) to prepare a single atom site catalyst (SASC) and successfully used in Li-CO2 battery. Li-CO2 batteries based on SA Ru-Co3 O4 /CC cathode exhibit enhanced electrochemical performances including low overpotential, ultra high capacity, and long cycle life. Density functional theory calculations reveal that single atom Ru as the driving force center can significantly enhance the intrinsic affinity for key intermediates, thus enhancing the reaction kinetics of CO2 reduction reaction in Li-CO2 batteries, and ultimately optimizing the growth pathway of discharge products. In addition, the Bader charge analysis indicates that Ru atoms as electron-deficient centers can enhance the catalytic activity of SA Ru-Co3 O4 /CC cathode for the CO2 evolution reaction. It is believed that this work has important implications for the development of new SASCs and the design of efficient catalyst for Li-CO2 batteries.
Collapse
Affiliation(s)
- Zheng Lian
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Youcai Lu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Chunzhi Wang
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Xiaodan Zhu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Shiyu Ma
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhongjun Li
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Qingchao Liu
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuangquan Zang
- College of ChemistryInstitute of Green CatalysisZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
10
|
Guo X, Xiao L, Yan P, Li M, Zhu M, Liu J. Synergistic tuning of electrochemical surface area and surface Co3+ by oxygen plasma enhances the capacities of Co3O4 lithium–oxygen battery cathodes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Xia Q, Zhao L, Zhang Z, Wang J, Li D, Han X, Zhou Z, Long Y, Dang F, Zhang Y, Chou S. MnCo 2 S 4 -CoS 1.097 Heterostructure Nanotubes as High Efficiency Cathode Catalysts for Stable and Long-Life Lithium-Oxygen Batteries Under High Current Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103302. [PMID: 34664424 PMCID: PMC8596117 DOI: 10.1002/advs.202103302] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Constructing the heterostructures is considered to be one of the most effective methods to improve the poor electrical conductivity and insufficient electrocatalytic properties of metal sulfide catalysts. In this work, MnCo2 S4 -CoS1.097 nanotubes are successfully prepared via a reflux- hydrothermal process. This novel cathode catalyst delivers high discharge/charge specific capacities of 21 765/21 746 mAh g-1 at 200 mA g-1 and good rate capability. In addition, a favorable cycling stability with a fixed specific capacity of 1000 mAh g-1 at high current density of 1000 mA g-1 (167 cycles) and 2000 mA g-1 (57 cycles) are delivered. It is proposed that fast transmission of ions and electrons accelerated by the built-in electric field, multiple active sites from the heterostructure, and nanotube architecture with large specific surface area are responsible for the superior electrochemical performance. To some extent, the rational design of this heterostructured metal sulfide catalyst provides guidance for the development of the stable and efficient cathode catalysts for Li-O2 batteries that can be employed under high current conditions.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinan250061China
- Institute for Carbon NeutralizationCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035China
| | - Lanling Zhao
- School of PhysicsShandong UniversityJinan250100P. R. China
| | - Zhijia Zhang
- School of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Jun Wang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinan250061China
| | - Deyuan Li
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinan250061China
| | - Xue Han
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinan250061China
| | - Zhaorui Zhou
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinan250061China
| | - Yuxin Long
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinan250061China
| | - Feng Dang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinan250061China
| | - Yiming Zhang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinan250061China
| | - Shulei Chou
- Institute for Carbon NeutralizationCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035China
| |
Collapse
|
12
|
Cao D, Zheng L, Li Q, Zhang J, Dong Y, Yue J, Wang X, Bai Y, Tan G, Wu C. Crystal Phase-Controlled Modulation of Binary Transition Metal Oxides for Highly Reversible Li-O 2 Batteries. NANO LETTERS 2021; 21:5225-5232. [PMID: 34060314 DOI: 10.1021/acs.nanolett.1c01276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reducing charge-discharge overpotential of transition metal oxide catalysts can eventually enhance the cell efficiency and cycle life of Li-O2 batteries. Here, we propose that crystal phase engineering of transition metal oxides could be an effective way to achieve the above purpose. We establish controllable crystal phase modulation of the binary MnxCo1-xO by adopting a cation regulation strategy. Systematic studies reveal an unprecedented relevancy between charge overpotential and crystal phase of MnxCo1-xO catalysts, whereas a dramatically reduced charge overpotential (0.48 V) via a rational optimization of Mn/Co molar ratio = 8/2 is achieved. Further computational studies indicate that the different morphologies of Li2O2 should be related to different electronic conductivity and binding of Li2O2 on crystal facets of MnxCo1-xO catalysts, finally leading to different charge overpotential. We anticipate that this specific crystal phase engineering would offer good technical support for developing high-performance transition metal oxide catalysts for advanced Li-O2 batteries.
Collapse
Affiliation(s)
- Dong Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lumin Zheng
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiaojun Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Junfan Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Dong
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiasheng Yue
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinran Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guoqiang Tan
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| |
Collapse
|
13
|
Zhou Y, Gu Q, Li Y, Tao L, Tan H, Yin K, Zhou J, Guo S. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries. NANO LETTERS 2021; 21:4861-4867. [PMID: 34044536 DOI: 10.1021/acs.nanolett.1c01631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The main challenge for lithium-oxygen (Li-O2) batteries is their sluggish oxygen evolution reaction (OER) kinetics and high charge overpotentials caused by the poorly conductive discharge products of lithium peroxide (Li2O2). In this contribution, the cesium lead bromide perovskite (CsPbBr3) nanocrystals were first employed as a high-performance cathode for Li-O2 batteries. The battery with a CsPbBr3 cathode can exhibit the lowest charge overpotential of 0.5 V and the best cycling performance of 400 cycles among all the reported perovskite-based Li-O2 cells, which represents a new benchmark. Most importantly, the density functional theory (DFT) calculations further prove that the rate limitation step during OER processes is the decomposition of LiO2 to form O2 and Li+, and the weak adsorption strength between CsPbBr3 surfaces and LiO2 results in a low charge overpotential for the CsPbBr3-based Li-O2 battery. This work first demonstrates the good potential of CsPbBr3 for application in metal-air batteries.
Collapse
Affiliation(s)
- Yin Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, China
| | - Yiju Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Kun Yin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jinhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Wang H, Wang X, Li M, Zheng L, Guan D, Huang X, Xu J, Yu J. Porous Materials Applied in Nonaqueous Li-O 2 Batteries: Status and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002559. [PMID: 32715511 DOI: 10.1002/adma.202002559] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Porous materials possessing high surface area, large pore volume, tunable pore structure, superior tailorability, and dimensional effect have been widely applied as components of lithium-oxygen (Li-O2 ) batteries. Herein, the theoretical foundation of the porous materials applied in Li-O2 batteries is provided, based on the present understanding of the battery mechanism and the challenges and advantageous qualities of porous materials. Furthermore, recent progress in porous materials applied as the cathode, anode, separator, and electrolyte in Li-O2 batteries is summarized, together with corresponding approaches to address the critical issues that remain at present. Particular emphasis is placed on the importance of the correlation between the function-orientated design of porous materials and key challenges of Li-O2 batteries in accelerating oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) kinetics, improving the electrode stability, controlling lithium deposition, suppressing the shuttle effect of the dissolved redox mediators, and alleviating electrolyte decomposition. Finally, the rational design and innovative directions of porous materials are provided for their development and application in Li-O2 battery systems.
Collapse
Affiliation(s)
- Huanfeng Wang
- College of Chemical and Food, Zhengzhou University of Technology, Zhengzhou, 450044, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoxue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Malin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Lijun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dehui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaolei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jijing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
15
|
Wang P, Ren Y, Wang R, Zhang P, Ding M, Li C, Zhao D, Qian Z, Zhang Z, Zhang L, Yin L. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat Commun 2020; 11:1576. [PMID: 32221290 PMCID: PMC7101366 DOI: 10.1038/s41467-020-15416-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/01/2020] [Indexed: 11/08/2022] Open
Abstract
Developing single-site catalysts featuring maximum atom utilization efficiency is urgently desired to improve oxidation-reduction efficiency and cycling capability of lithium-oxygen batteries. Here, we report a green method to synthesize isolated cobalt atoms embedded ultrathin nitrogen-rich carbon as a dual-catalyst for lithium-oxygen batteries. The achieved electrode with maximized exposed atomic active sites is beneficial for tailoring formation/decomposition mechanisms of uniformly distributed nano-sized lithium peroxide during oxygen reduction/evolution reactions due to abundant cobalt-nitrogen coordinate catalytic sites, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated over-potentials. Critically, theoretical simulations disclose that rich cobalt-nitrogen moieties as the driving force centers can drastically enhance the intrinsic affinity of intermediate species and thus fundamentally tune the evolution mechanism of the size and distribution of final lithium peroxide. In the lithium-oxygen battery, the electrode affords remarkably decreased charge/discharge polarization (0.40 V) and long-term cyclability (260 cycles at 400 mA g-1).
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Yingying Ren
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Peng Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Mingjie Ding
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Caixia Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Danyang Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Zhao Qian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Zhiwei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Luyuan Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China.
| |
Collapse
|
16
|
Hu A, Lv W, Lei T, Chen W, Hu Y, Shu C, Wang X, Xue L, Huang J, Du X, Wang H, Tang K, Gong C, Zhu J, He W, Long J, Xiong J. Heterostructured NiS 2/ZnIn 2S 4 Realizing Toroid-like Li 2O 2 Deposition in Lithium-Oxygen Batteries with Low-Donor-Number Solvents. ACS NANO 2020; 14:3490-3499. [PMID: 32101395 DOI: 10.1021/acsnano.9b09646] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aprotic lithium-oxygen (Li-O2) battery has triggered tremendous efforts for advanced energy storage due to the high energy density. However, realizing toroid-like Li2O2 deposition in low-donor-number (DN) solvents is still the intractable obstruction. Herein, a heterostructured NiS2/ZnIn2S4 is elaborately developed and investigated as a promising catalyst to regulate the Li2O2 deposition in low-DN solvents. The as-developed NiS2/ZnIn2S4 promotes interfacial electron transfer, regulates the adsorption energy of the reaction intermediates, and accelerates O-O bond cleavage, which are convincingly evidenced experimentally and theoretically. As a result, the toroid-like Li2O2 product is achieved in a Li-O2 battery with low-DN solvents via the solvation-mediated pathway, which demonstrates superb cyclability over 490 cycles and a high output capacity of 3682 mA h g-1. The interface engineering of heterostructure catalysts offers more possibilities for the realization of toroid-like Li2O2 in low-DN solvents, holding great promise in achieving practical applications of Li-O2 batteries as well as enlightening the material design in catalytic systems.
Collapse
Affiliation(s)
- Anjun Hu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weiqiang Lv
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tianyu Lei
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yin Hu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lanxin Xue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianwen Huang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinchuan Du
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongbo Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kai Tang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chuanhui Gong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun Zhu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weidong He
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
17
|
Liu X, Zhang P, Liu L, Feng J, He X, Song X, Han Q, Wang H, Peng Z, Zhao Y. Inhibition of Discharge Side Reactions by Promoting Solution-Mediated Oxygen Reduction Reaction with Stable Quinone in Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10607-10615. [PMID: 32031771 DOI: 10.1021/acsami.0c01105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aprotic lithium-oxygen (Li-O2) batteries with an ultrahigh theoretical energy density have great potential in rechargeable power supply, while their application still faces several challenges, especially poor cycle stability. To solve the problems, one of the effective strategies is to inhibit the generation of the LiO2 intermediate produced via a surface-mediated oxygen reduction reaction (ORR) pathway, which is an important species inducing byproduct generation and low cell cyclic stability. Herein, a series of quinones and solid materials serve as the solution-mediated and surface-mediated ORR catalysts, and it was found that the generation of LiO2 and byproducts from solid catalysts was inhibited by quinones. Among the studied quinones, benzo[1,2-b:4,5-b']dithiophene-4,8-dione, a quinone molecule with the advantage of a highly symmetrical planar and conjugated structure and without α-H, exhibits high redox potential, diffusion coefficient, and electrochemical stability, and consequently the best ORR activities and the capability to inhibit byproduct generation. It indicated that the increase of the solution-mediated ORR pathway plays an important role in restraining the discharging side reaction, substantially improving cell cycle stability and capacity. This study provides the theoretical and experimental basis for better understanding the ORR process of Li-O2 batteries.
Collapse
Affiliation(s)
- Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Peng Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Liangliang Liu
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jianwen Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaofeng He
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qing Han
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hua Wang
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhangquan Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
18
|
Liang R, Hu A, Li M, Ran Z, Shu C, Long J. Defect regulation of heterogeneous nickel-based oxides via interfacial engineering for long-life lithium-oxygen batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Feng L, Li Y, Sun L, Mi H, Ren X, Zhang P. Heterostructured CoO-Co 3O 4 nanoparticles anchored on nitrogen-doped hollow carbon spheres as cathode catalysts for Li-O 2 batteries. NANOSCALE 2019; 11:14769-14776. [PMID: 31348479 DOI: 10.1039/c9nr03521d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lithium-oxygen batteries have received extensive attention due to their high theoretical energy density and environmental friendliness. Herein, CoO-Co3O4 nanoparticles coated on nitrogen-doped hollow carbon spheres (N-HC@CoO-Co3O4) are prepared by a simple method, and N-HC@CoO-Co3O4 when used as the cathode material for a lithium-oxygen battery shows high catalytic performance. The nitrogen-doped hollow carbon spheres not only ensure an ultra-high specific surface area for the accommodation of the Li2O2 discharge products but also provide more reactive sites. CoO-Co3O4 nanoparticles supported on the surface of the nitrogen-doped hollow carbon spheres can effectively catalyze the formation and decomposition of worm-like Li2O2. The batteries assembled with N-HC@CoO-Co3O4 catalysts exhibit reduced overpotential, improved cycling performance, and high rate capability. Ultra-high discharge capacities of 24 265 mA h g-1 at a current density of 300 mA g-1 and 3622 mA h g-1 at a current density of 1000 mA g-1 are obtained. With a cutoff capacity of 500 mA h g-1, the battery with an N-HC@CoO-Co3O4 electrode can reach more than 112 cycles. This research offers new insights into the design of heterostructured oxide catalysts for Li-O2 batteries.
Collapse
Affiliation(s)
- Lixia Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | | | | | | | | | | |
Collapse
|
20
|
Wang P, Li C, Dong S, Ge X, Zhang P, Miao X, Zhang Z, Wang C, Yin L. One-Step Route Synthesized Co 2 P/Ru/N-Doped Carbon Nanotube Hybrids as Bifunctional Electrocatalysts for High-Performance Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900001. [PMID: 31074926 DOI: 10.1002/smll.201900001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The large-scale commercial application of lithium-oxygen batteries (LOBs) is overwhelmed by the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) associated with insoluble and insulated Li2 O2 . Herein, an elaborate design on a highly catalytic LOBs cathode constructed by N-doped carbon nanotubes (CNT) with in situ encapsulated Co2 P and Ru nanoparticles is reported. The homogeneously dispersed Co2 P and Ru catalysts can effectively modulate the formation and decomposition behavior of Li2 O2 during discharge/charge processes, ameliorating the electronically insulating property of Li2 O2 and constructing a homogenous low-impedance Li2 O2 /catalyst interface. Compared with Co/CNT and Ru/CNT electrodes, the Co2 P/Ru/CNT electrode delivers much higher oxygen reduction triggering onset potential and higher ORR and OER peak current and integral areas, showing greatly improved ORR/OER kinetics due to the synergistic effects of Co2 P and Ru. Li-O2 cells based on the Ru/Co2 P/CNT electrode demonstrate improved ORR/OER overpotential of 0.75 V, excellent rate capability of 12 800 mAh g-1 at 1 A g-1 , and superior cycle stability for more than 185 cycles under a restricted capacity of 1000 mAh g-1 at 100 mA g-1 . This work paves an exciting avenue for the design and construction of bifunctional catalytic cathodes by coupling metal phosphides with other active components in LOBs.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Caixia Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Shihua Dong
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Xiaoli Ge
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Peng Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Xianguang Miao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Zhiwei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Chengxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| |
Collapse
|
21
|
Shu C, Wang J, Long J, Liu HK, Dou SX. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804587. [PMID: 30767276 DOI: 10.1002/adma.201804587] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Indexed: 06/09/2023]
Abstract
The aprotic lithium-oxygen (Li-O2 ) battery has excited huge interest due to it having the highest theoretical energy density among the different types of rechargeable battery. The facile achievement of a practical Li-O2 battery has been proven unrealistic, however. The most significant barrier to progress is the limited understanding of the reaction processes occurring in the battery, especially during the charging process on the positive electrode. Thus, understanding the charging mechanism is of crucial importance to enhance the Li-O2 battery performance and lifetime. Here, recent progress in understanding the electrochemistry and chemistry related to charging in Li-O2 batteries is reviewed along with the strategies to address the issues that exist in the charging process at the present stage. The properties of Li2 O2 and the mechanisms of Li2 O2 oxidation to O2 on charge are discussed comprehensively, as are the accompanied parasitic chemistries, which are considered as the underlying issues hindering the reversibility of Li-O2 batteries. Based on the detailed discussion of the charging mechanism, innovative strategies for addressing the issues for the charging process are discussed in detail. This review has profound implications for both a better understanding of charging chemistry and the development of reliable rechargeable Li-O2 batteries in the future.
Collapse
Affiliation(s)
- Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, P. R. China
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, P. R. China
| | - Hua-Kun Liu
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
22
|
Zhang P, Liu L, He X, Liu X, Wang H, He J, Zhao Y. Promoting Surface-Mediated Oxygen Reduction Reaction of Solid Catalysts in Metal–O2 Batteries by Capturing Superoxide Species. J Am Chem Soc 2019; 141:6263-6270. [DOI: 10.1021/jacs.8b13568] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Peng Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Liangliang Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Xiaofeng He
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Hua Wang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jinling He
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| |
Collapse
|
23
|
Bi R, Liu G, Zeng C, Wang X, Zhang L, Qiao SZ. 3D Hollow α-MnO 2 Framework as an Efficient Electrocatalyst for Lithium-Oxygen Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804958. [PMID: 30714342 DOI: 10.1002/smll.201804958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Lithium-oxygen (Li-O2 ) batteries are attracting more attention owing to their superior theoretical energy density compared to conventional Li-ion battery systems. With regards to the catalytically electrochemical reaction on a cathode, the electrocatalyst plays a key role in determining the performance of Li-O2 batteries. Herein, a new 3D hollow α-MnO2 framework (3D α-MnO2 ) with porous wall assembled by hierarchical α-MnO2 nanowires is prepared by a template-induced hydrothermal reaction and subsequent annealing treatment. Such a distinctive structure provides some essential properties for Li-O2 batteries including the intrinsic high catalytic activity of α-MnO2 , more catalytic active sites of hierarchical α-MnO2 nanowires on 3D framework, continuous hollow network and rich porosity for the storage of discharge product aggregations, and oxygen diffusion. As a consequence, 3D α-MnO2 achieves a high specific capacity of 8583 mA h g-1 at a current density of 100 mA g-1 , a superior rate capacity of 6311 mA h g-1 at 300 mA g-1 , and a very good cycling stability of 170 cycles at a current density of 200 mA g-1 with a fixed capacity of 1000 mA h g-1 . Importantly, the presented design strategy of 3D hollow framework in this work could be extended to other catalytic cathode design for Li-O2 batteries.
Collapse
Affiliation(s)
- Ran Bi
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guoxue Liu
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Cheng Zeng
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xinping Wang
- State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Lei Zhang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
24
|
Bie S, Du M, He W, Zhang H, Yu Z, Liu J, Liu M, Yan W, Zhou L, Zou Z. Carbon Nanotube@RuO 2 as a High Performance Catalyst for Li-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5146-5151. [PMID: 30640419 DOI: 10.1021/acsami.8b20573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Efficient electrocatalysts for Li2CO3 decomposition play an important role in Li-CO2 batteries. In this paper, carbon nanotubes (CNTs) decorated with RuO2 is firstly introduced as cathode materials for Li-CO2 batteries. The CNT@RuO2 composite can not only deliver a high specific capacity but also a lower charge voltage. With the CNT@RuO2 cathodes, the Coulombic efficiency still remains around 100% until the 15th cycle. The charge voltage of early 30 cycles at a current of 50 mA·g-1 with a capacity limit of 500 mAh·g-1 can be fully lowered under 4.0 V. Particularly, the CNT@RuO2 cathode can realize most decomposition of prefilled Li2CO3 and show a platform at around 3.9 V. This catalytic activity toward both in situ formed and preloaded Li2CO3 is more feasible for practical application in complex environment.
Collapse
Affiliation(s)
- Shiyu Bie
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Meili Du
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Wenxiang He
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Huigang Zhang
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Zhentao Yu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Jianguo Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
- Kunshan Sunlaite New Energy Co., Ltd. , 1666# South Zuchongzhi Road , Kunshan 215347 , Jiangsu , China
| | - Meng Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
| | - Wuwei Yan
- Kunshan Sunlaite New Energy Co., Ltd. , 1666# South Zuchongzhi Road , Kunshan 215347 , Jiangsu , China
| | - Liang Zhou
- Kunshan Sunlaite New Energy Co., Ltd. , 1666# South Zuchongzhi Road , Kunshan 215347 , Jiangsu , China
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , China
- Kunshan Sunlaite New Energy Co., Ltd. , 1666# South Zuchongzhi Road , Kunshan 215347 , Jiangsu , China
| |
Collapse
|
25
|
Wang G, Zhang S, Qian R, Wen Z. Atomic-Thick TiO 2(B) Nanosheets Decorated with Ultrafine Co 3O 4 Nanocrystals As a Highly Efficient Catalyst for Lithium-Oxygen Battery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41398-41406. [PMID: 30398850 DOI: 10.1021/acsami.8b15774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Development of highly efficient catalysts based on transition metal oxides (TMOs) is desirable and remains a big challenge for lithium-oxygen (Li-O2) batteries. In the present work, atomic-thick TiO2(B) nanosheets decorated with ultrafine Co3O4 nanocrystals (Co3O4-TiO2(B)) were synthesized and utilized as cathode catalyst in Li-O2 batteries by designing a hybrid and inducing oxygen vacancies. The XPS characterization results suggested that the introduction of Co3O4 nanocrystals could induce numerous oxygen vacancies in the TiO2(B) nanosheets through Co doping in the hybrid catalyst. The subsequent electrochemical experiments indicated that the Li-O2 batteries with the prepared hybrid catalysts showed high specific capacity (11000 mAhg-1), and good cycling stability (200 cycles at a limited capacity of 1000 mAhg-1) with low polarization (above 2.7 V for discharge medium voltage and below 4.0 V for charge medium voltage within 80 cycles). Furthermore, a possible working mechanism was proposed for a better understanding of the high performance of Co3O4-TiO2(B) catalysts for the Li-O2 batteries. This work also provided new insights into designing efficient catalysts through interface engineering between 2D (two-dimensional) TMOs and 0D (zero-dimensional) TMOs for Li-O2 batteries or other catalysis-related fields.
Collapse
Affiliation(s)
- Gan Wang
- University of Chinese Academy of Science , Beijing 100049 , P. R. China
| | | | | | | |
Collapse
|
26
|
Hou Z, Shu C, Long J. Honeycomb-like Ni3S2 supported on Ni foam as high performance free-standing cathode for lithium oxygen batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Zheng M, Jiang J, Lin Z, He P, Shi Y, Zhou H. Stable Voltage Cutoff Cycle Cathode with Tunable and Ordered Porous Structure for Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803607. [PMID: 30318700 DOI: 10.1002/smll.201803607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Ordered porous RuO2 materials with various pore structure parameters are prepared via a hard-template method and are used as the carbon-free cathodes for Li-O2 batteries under the voltage cutoff cycle mode. The influences of pore structure parameters of porous RuO2 on electrochemical performance are systematically studied. Results indicate that specific surface area and pore size determine the specific capacity and round-trip efficiency of Li-O2 batteries. Too small pores cause pore blockage and hinder the diffusion pathways of Li+ and O2 , thereby causing small specific capacity and high overpotentials. Too large pores weaken the mechanical property of porous RuO2 , thereby causing the rapid decrease in capacity during electrochemical reaction. The Li-O2 battery based on the RuO2 cathode with an average pore size of 16 nm (RuO2 -16) exhibits a high round-trip efficiency of ≈75.6% and an excellent cycling stability of up to 70 cycles at 100 mA g-1 with a voltage window of 2.5-4.0 V. The superior performance of RuO2 -16 can be attributed to its optimal pore structure parameters. Furthermore, the in situ differential electrochemical mass spectrometry test demonstrates that RuO2 can effectively reduce parasitic reactions compared with carbon materials.
Collapse
Affiliation(s)
- Mingbo Zheng
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Jie Jiang
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
| | - Zixia Lin
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Ping He
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
| | - Yi Shi
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
| | - Haoshen Zhou
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
| |
Collapse
|
28
|
Zhang R, Zhao T, Wu M, Jiang H, Zeng L. Mesoporous ultrafine Ta2O5 nanoparticle with abundant oxygen vacancies as a novel and efficient catalyst for non-aqueous Li-O2 batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Cao X, Sun Z, Zheng X, Jin C, Tian J, Li X, Yang R. MnCo 2 O 4 /MoO 2 Nanosheets Grown on Ni foam as Carbon- and Binder-Free Cathode for Lithium-Oxygen Batteries. CHEMSUSCHEM 2018; 11:574-579. [PMID: 29235727 DOI: 10.1002/cssc.201702240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Carbon is usually used as cathode material for Li-O2 batteries. However, the discharge product, such as Li2 O2 and LiO2 , could react with carbon to form an insulating lithium carbonate layer, resulting in cathode passivation and capacity fading. To solve this problem, the development of non-carbon cathodes is highly desirable. Herein, we successfully synthesized MnCo2 O4 (MCO) nanoparticles anchored on porous MoO2 nanosheets that are grown on Ni foam (current collector) (MCO/MoO2 @Ni), acting as a carbon- and binder-free cathode for Li-O2 batteries, in an attempt to improve the electrical conductivity, electrocatalytic activity, and durability. This MCO/MoO2 @Ni electrode delivers excellent cyclability (more than 400 cycles) and rate performance (voltage gap of 0.75 V at 5000 mA g-1 ). Notably, the battery with this electrode exhibits a high energy efficiency (higher than 85 %). The advanced electrochemical performance of MCO/MoO2 @Ni can be attributed to its high electrical conductivity, excellent stability, and outstanding electrocatalytic activity. This work offers a new strategy to fabricate high-performance Li-O2 batteries with non-carbon cathode materials.
Collapse
Affiliation(s)
- Xuecheng Cao
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Laboratory of Advanced Carbon Materials and, Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Institute of Chemical Power Sources, Suzhou, Jiangsu, 215006, P. R. China
| | - Zhihui Sun
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Laboratory of Advanced Carbon Materials and, Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Institute of Chemical Power Sources, Suzhou, Jiangsu, 215006, P. R. China
| | - Xiangjun Zheng
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Laboratory of Advanced Carbon Materials and, Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Institute of Chemical Power Sources, Suzhou, Jiangsu, 215006, P. R. China
| | - Chao Jin
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Laboratory of Advanced Carbon Materials and, Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Institute of Chemical Power Sources, Suzhou, Jiangsu, 215006, P. R. China
| | - Jinhua Tian
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Laboratory of Advanced Carbon Materials and, Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Institute of Chemical Power Sources, Suzhou, Jiangsu, 215006, P. R. China
| | - Xiaowei Li
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Laboratory of Advanced Carbon Materials and, Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Institute of Chemical Power Sources, Suzhou, Jiangsu, 215006, P. R. China
| | - Ruizhi Yang
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Laboratory of Advanced Carbon Materials and, Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Institute of Chemical Power Sources, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
30
|
Zhang P, Zhao Y, Zhang X. Functional and stability orientation synthesis of materials and structures in aprotic Li–O2batteries. Chem Soc Rev 2018; 47:2921-3004. [DOI: 10.1039/c8cs00009c] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review presents the recent advances made in the functional and stability orientation synthesis of materials/structures for Li–O2batteries.
Collapse
Affiliation(s)
- Peng Zhang
- Key Lab for Special Functional Materials of Ministry of Education
- Collaborative Innovation Center of Nano Functional Materials and Applications
- Henan University
- Kaifeng
- P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education
- Collaborative Innovation Center of Nano Functional Materials and Applications
- Henan University
- Kaifeng
- P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
31
|
Luo C, Li J, Tong S, He S, Li J, Yang X, Li X, Meng Y, Wu M. Facile and scalable carbon- and binder-free electrode materials for ultra-stable and highly improved Li–O2 batteries. Chem Commun (Camb) 2018; 54:2858-2861. [DOI: 10.1039/c8cc00148k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A scalable and ultra-stable carbon- and binder-free Ti@Ru material was synthesized which exhibited potential applications in Li–O2 batteries.
Collapse
Affiliation(s)
- Cuiping Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Jiade Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Shengfu Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Shiman He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Jun Li
- School of Electronic Science and Engineering
- Nanjing University
- Nanjing 210046
- China
| | - Xianfeng Yang
- Analytical and Testing Center
- South China University of Technology
- Guangzhou 510640
- China
| | - Xiaohui Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Yuying Meng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Mingmei Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|