1
|
Kalantari Bolaghi Z, Rodriguez-Seco C, Yurtsever A, Ma D. Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:103. [PMID: 38202558 PMCID: PMC10781176 DOI: 10.3390/nano14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a metal-free photocatalyst used for visible-driven hydrogen production, CO2 reduction, and organic pollutant degradation. In addition to the most attractive feature of visible photoactivity, its other benefits include thermal and photochemical stability, cost-effectiveness, and simple and easy-scale-up synthesis. However, its performance is still limited due to its low absorption at longer wavelengths in the visible range, and high charge recombination. In addition, the exfoliated nanosheets easily aggregate, causing the reduction in specific surface area, and thus its photoactivity. Herein, we propose the use of ultra-thin porous g-C3N4 nanosheets to overcome these limitations and improve its photocatalytic performance. Through the optimization of a novel multi-step synthetic protocol, based on an initial thermal treatment, the use of nitric acid (HNO3), and an ultrasonication step, we were able to obtain very thin and well-tuned material that yielded exceptional photodegradation performance of methyl orange (MO) under visible light irradiation, without the need for any co-catalyst. About 96% of MO was degraded in as short as 30 min, achieving a normalized apparent reaction rate constant (k) of 1.1 × 10-2 min-1mg-1. This represents the highest k value ever reported using C3N4-based photocatalysts for MO degradation, based on our thorough literature search. Ultrasonication in acid not only prevents agglomeration of g-C3N4 nanosheets but also tunes pore size distribution and plays a key role in this achievement. We also studied their performance in a photocatalytic hydrogen evolution reaction (HER), achieving a production of 1842 µmol h-1 g-1. Through a profound analysis of all the samples' structure, morphology, and optical properties, we provide physical insight into the improved performance of our optimized porous g-C3N4 sample for both photocatalytic reactions. This research may serve as a guide for improving the photocatalytic activity of porous two-dimensional (2D) semiconductors under visible light irradiation.
Collapse
Affiliation(s)
| | - Cristina Rodriguez-Seco
- Centre Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, QC J3X 1P7, Canada; (Z.K.B.); (A.Y.)
| | | | - Dongling Ma
- Centre Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, QC J3X 1P7, Canada; (Z.K.B.); (A.Y.)
| |
Collapse
|
2
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
3
|
Deshmukh S, Pawar K, Koli V, Pachfule P. Emerging Graphitic Carbon Nitride-based Nanobiomaterials for Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:1339-1367. [PMID: 37011107 DOI: 10.1021/acsabm.2c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Graphitic carbon nitride (g-CN) based nanostructures are distinctive materials with unique compositional, structural, optical, and electronic properties with exceptional band structure, moderate surface area, and exceptional thermal and chemical stability. Because of these properties, g-CN based nanomaterials have shown promising applications and higher performance in the biological avenue. This review covers the state-of-the-art synthetic strategies used for the preparation of the materials, the basic structure, and a panorama of different optimization strategies leading to improved physicochemical properties responsible for the biological application. The following sections include the recent progress in the use of g-CN based nanobiomaterials for biosensors, bioimaging, photodynamic therapy, drug delivery, chemotherapy, and the antimicrobial segment. Furthermore, we have summarized the role and evaluation of biosafety and biocompatibility of the material. Finally, the unresolved issues, plausible challenges, current status, and future perspectives for the development and design of g-CN have been summarized and are expected to promote a clinical path for the medical sector and human well-being.
Collapse
Affiliation(s)
- Shamkumar Deshmukh
- Department of Chemistry, Damani Bhairuratan Fatechand, Dayanand College of Arts and Science, Solapur 413002, India
| | - Krishna Pawar
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, India
| | - Valmiki Koli
- Department of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
4
|
Microwave-assisted chemical modification of g-C3N4 for photoinduced processes: organic degradation, hydrogen production and selective oxidation of alcohols. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Guo S, Zheng L, He W, Chai C, Chen X, Ma S, Wang N, Choi MM, Bian W. S,O-doped carbon nitride as a fluorescence probe for the label-free detection of folic acid and targeted cancer cell imaging. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Roy R, Chacko AR, Abraham T, Korah BK, John BK, Punnoose MS, Mohan C, Mathew B. Recent Advances in Graphitic Carbon Nitrides (g‐C
3
N
4
) as Photoluminescence Sensing Probe: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Richa Roy
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Anu Rose Chacko
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | | | - Binila K Korah
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Bony K John
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Mamatha Susan Punnoose
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Chitra Mohan
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Beena Mathew
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| |
Collapse
|
7
|
Abstract
In photochemical production of hydrogen from water, the hole-mediated oxidation reaction is the rate-determining step. A poor solar-to-hydrogen efficiency is usually related to a mismatch between the internal quantum efficiency of photon-induced hole generation and the apparent quantum yield of hydrogen. This waste of photogenerated holes is unwanted yet unavoidable. Although great progress has been made, we are still far away from the required level of dexterity to deal with the associated challenges of wasted holes and its consequential chemical effects that have placed one of the greatest bottlenecks in attaining high solar-to-hydrogen efficiency. A critical assessment of the hole and its related phenomena in solar hydrogen production would, therefore, pave the way moving forward. In this regard, we focus on the contextual and conceptual understanding of the dynamics and kinetics of photogenerated holes and its critical role in driving redox reactions, with the objective of guiding future research. The main reasons behind and consequences of unused holes are examined and different approaches to improve overall efficiency are outlined. We also highlight yet unsolved research questions related to holes in solar fuel production.
Collapse
|
8
|
Chakraborty J, Nath I, Verpoort F. A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chem Soc Rev 2022; 51:1124-1138. [DOI: 10.1039/d1cs00916h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A detailed physicochemical explanation for experimental observations is provided for POPs as powerful photocatalysts for organic transformations and wastewater decontamination.
Collapse
Affiliation(s)
- Jeet Chakraborty
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Ipsita Nath
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|
9
|
Rahman MZ, Maity P, Mohammed OF, Gascon J. Insight into the role of reduced graphene oxide for enhancing photocatalytic hydrogen evolution in disordered carbon nitride. Phys Chem Chem Phys 2022; 24:11213-11221. [DOI: 10.1039/d2cp00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to crystalline carbon nitride, the performance of disordered carbon nitride (d-CN) as a hydrogen production photocatalyst is extremely poor. Owing to disordered atomic orientation, it is prone to numerous...
Collapse
|
10
|
Tailoring g-C3N4 with Lanthanum and Cobalt Oxides for Enhanced Photoelectrochemical and Photocatalytic Activity. Catalysts 2021. [DOI: 10.3390/catal12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herein, the synthesis, characterization, and photoelectrochemical and photocatalytic characteristics of hydrothermally prepared La2O3–g-C3N4, CoO–g-C3N4, and La2O3–CoO–g-C3N4 are discussed. The XRD analysis and crystalline phases unveiled the impregnation of La2O3 and CoO into g-C3N4. The microscopic analysis supports the formation of g-C3N4 nanoflakes and La2O3 and CoO nanoparticles embedded homogeneously in the La2O3–CoO–g-C3N4 nanocomposite, whereas the EDX comprehended their respective elemental composition and ratios. A bandgap energy of 2.38 eV for La2O3–CoO–g-C3N4 was calculated using the Tauc plot method, complementing high visible-light activity. The solar-driven water-splitting reaction exhibited significant photocurrent efficiency (~3.75 mA/cm2), augmenting the hydrogen generation by La2O3–CoO–g-C3N4 compared to that by pure g-C3N4, La2O3–g-C3N4, and CoO–g-C3N4 in 0.5 M Na2SO4 electrolyte. The synergistic effect of La2O3 and CoO impregnation with g-C3N4 led to effective division of the photogenerated charge transporters, enhancing the photocatalytic hydrogen generation by the photocatalysts. Furthermore, photocatalytic pollutant removal, namely greater than 90% decomposition of methylene blue (MB) from water, was investigated with a pseudo-first-order reaction kinetics under 1 sun visible-light irradiation. Thus, La2O3–CoO–g-C3N4 nanocomposite was found to be a prospective material for harnessing solar energy.
Collapse
|
11
|
Ma J, Liu K, Yang X, Jin D, Li Y, Jiao G, Zhou J, Sun R. Recent Advances and Challenges in Photoreforming of Biomass-Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. CHEMSUSCHEM 2021; 14:4903-4922. [PMID: 34636483 DOI: 10.1002/cssc.202101173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Photoreforming of biomass into hydrogen, biofuels, and chemicals is highly desired, yet this field of research is still in its infancy. Developing an efficient, novel, and environmentally friendly photocatalyst is key to achieving these goals. To date, the nonmetallic and eco-friendly material carbon nitride has found many uses in reactions such as water splitting, CO2 reduction, N2 fixation, and biorefinery, owing to its outstanding photocatalytic activity. However, a narrow light absorption range and fast charge recombination are often encountered in the pristine carbon nitride photocatalytic system, which resulted in unsatisfying photocatalytic activity. To improve the photocatalytic performance of pure carbon nitride in biomass reforming, modification is needed. In this Review, the design and preparation of functional carbon nitride, as well as its photocatalytic properties for the synthesis of hydrogen, biofuels, and chemicals through biomass reforming, are discussed alongside potential avenues for its future development.
Collapse
Affiliation(s)
- Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108, P. R. China
| | - Kangning Liu
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xiaopan Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Gaojie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
12
|
Tan M, Yu C, Li J, Li Y, Tao C, Liu C, Meng H, Su Y, Qiao L, Bai Y. Engineering of g-C 3N 4-based photocatalysts to enhance hydrogen evolution. Adv Colloid Interface Sci 2021; 295:102488. [PMID: 34332277 DOI: 10.1016/j.cis.2021.102488] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023]
Abstract
The technology of photocatalytic hydrogen production that converts abundant yet intermittent solar energy into an environmentally friendly alternative energy source is an attractive strategy to mitigate the energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4), as a promising photocatalyst, has gradually received focus in the field of artificial photosynthesis due to its appealing optical property, high chemical stability and easy synthesis. However, the limited light absorption and massive recombination of photoinduced carriers have hindered the photocatalytic activity of bare g-C3N4. Therefore, from the perspective of theoretical calculations and experiments, many valid approaches have been applied to rationally design the photocatalyst and ameliorate the hydrogen production performance, such as element doping, defect engineering, morphology tuning, and semiconductor coupling. This review summarized the latest progress of g-C3N4-based photocatalysts from two perspectives, modification of pristine g-C3N4 and interfacial engineering design. It is expected to offer feasible suggestions for the fabrication of low-cost and high-efficiency photocatalysts and the photocatalytic mechanism analyses assisted by calculation in the near future. Finally, the prospects and challenges of this exciting research field are discussed.
Collapse
Affiliation(s)
- Mengxi Tan
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengye Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Junjie Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengdong Tao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanbao Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huimin Meng
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
13
|
Pios S, Huang X, Sobolewski AL, Domcke W. Triangular boron carbon nitrides: an unexplored family of chromophores with unique properties for photocatalysis and optoelectronics. Phys Chem Chem Phys 2021; 23:12968-12975. [PMID: 34059871 DOI: 10.1039/d1cp02026a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has recently been shown that cycl[3.3.3]azine and heptazine (1,3,4,6,7,9,9b-heptaazaphenalene) as well as related azaphenalenes exhibit inverted singlet and triplet states, that is, the energy of the lowest singlet excited state (S1) is below the energy of the lowest triplet excited state (T1). This feature is unique among all known aromatic chromophores and is of outstanding relevance for applications in photocatalysis and organic optoelectronics. Heptazine is the building block of the polymeric material graphitic carbon nitride which is an extensively explored photocatalyst in hydrogen evolution photocatalysis. Derivatives of heptazine have also been identified as efficient emitters in organic light emitting diodes (OLEDs). In both areas, the inverted singlet-triplet gap of heptazine is a highly beneficial feature. In photocatalysis, the absence of a long-lived triplet state eliminates the activation of atmospheric oxygen, which is favourable for long-term operational stability. In optoelectronics, singlet-triplet inversion implies the possibility of 100% fluorescence efficiency of electron-hole recombination. However, the absorption and luminescence wavelengths of heptazine and the S1-S0 transition dipole moment are difficult to tune for optimal functionality. In this work, we employed high-level ab initio electronic structure theory to devise and characterize a large family of novel heteroaromatic chromophores, the triangular boron carbon nitrides. These novel heterocycles inherit essential spectroscopic features from heptazine, in particular the inverted singlet-triplet gap, while their absorption and luminescence spectra and transition dipole moments are widely tuneable. For applications in photocatalysis, the wavelength of the absorption maximum can be tuned to improve the overlap with the solar spectrum at the surface of earth. For applications in OLEDs, the colour of emission can be adjusted and the fluorescence yield can be enhanced.
Collapse
Affiliation(s)
- Sebastian Pios
- Department of Chemistry, Technical University of Munich, 85747 Garching, Germany.
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, 85747 Garching, Germany.
| | | | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, 85747 Garching, Germany.
| |
Collapse
|
14
|
Vijeta A, Casadevall C, Roy S, Reisner E. Visible-Light Promoted C-O Bond Formation with an Integrated Carbon Nitride-Nickel Heterogeneous Photocatalyst. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:8575-8580. [PMID: 38505321 PMCID: PMC10947600 DOI: 10.1002/ange.202016511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/11/2022]
Abstract
Ni-deposited mesoporous graphitic carbon nitride (Ni-mpg-CNx) is introduced as an inexpensive, robust, easily synthesizable and recyclable material that functions as an integrated dual photocatalytic system. This material overcomes the need of expensive photosensitizers, organic ligands and additives as well as limitations of catalyst deactivation in the existing photo/Ni dual catalytic cross-coupling reactions. The dual catalytic Ni-mpg-CNx is demonstrated for C-O coupling between aryl halides and aliphatic alcohols under mild condition. The reaction affords the ether product in good-to-excellent yields (60-92 %) with broad substrate scope, including heteroaryl and aryl halides bearing electron-withdrawing, -donating and neutral groups. The heterogeneous Ni-mpg-CNx can be easily recovered from the reaction mixture and reused over multiple cycles without loss of activity. The findings highlight exciting opportunities for dual catalysis promoted by a fully heterogeneous system.
Collapse
Affiliation(s)
- Arjun Vijeta
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Carla Casadevall
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Souvik Roy
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Current address: School of ChemistryUniversity of LincolnJoseph Banks LaboratoriesLincolnLN6 7DLUK
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
15
|
Vijeta A, Casadevall C, Roy S, Reisner E. Visible-Light Promoted C-O Bond Formation with an Integrated Carbon Nitride-Nickel Heterogeneous Photocatalyst. Angew Chem Int Ed Engl 2021; 60:8494-8499. [PMID: 33559927 PMCID: PMC8048670 DOI: 10.1002/anie.202016511] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/10/2022]
Abstract
Ni-deposited mesoporous graphitic carbon nitride (Ni-mpg-CNx ) is introduced as an inexpensive, robust, easily synthesizable and recyclable material that functions as an integrated dual photocatalytic system. This material overcomes the need of expensive photosensitizers, organic ligands and additives as well as limitations of catalyst deactivation in the existing photo/Ni dual catalytic cross-coupling reactions. The dual catalytic Ni-mpg-CNx is demonstrated for C-O coupling between aryl halides and aliphatic alcohols under mild condition. The reaction affords the ether product in good-to-excellent yields (60-92 %) with broad substrate scope, including heteroaryl and aryl halides bearing electron-withdrawing, -donating and neutral groups. The heterogeneous Ni-mpg-CNx can be easily recovered from the reaction mixture and reused over multiple cycles without loss of activity. The findings highlight exciting opportunities for dual catalysis promoted by a fully heterogeneous system.
Collapse
Affiliation(s)
- Arjun Vijeta
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Carla Casadevall
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Souvik Roy
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Current address: School of ChemistryUniversity of LincolnJoseph Banks LaboratoriesLincolnLN6 7DLUK
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
16
|
Zhao G, Hao S, Guo J, Xing Y, Zhang L, Xu X. Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63670-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Chen F, Ma T, Zhang T, Zhang Y, Huang H. Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005256. [PMID: 33501728 DOI: 10.1002/adma.202005256] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Semiconductor-based photocatalysis as a productive technology furnishes a prospective solution to environmental and renewable energy issues, but its efficiency greatly relies on the effective bulk and surface separation of photoexcited charge carriers. Exploitation of atomic-level strategies allows in-depth understanding on the related mechanisms and enables bottom-up precise design of photocatalysts, significantly enhancing photocatalytic activity. Herein, the advances on atomic-level charge separation strategies toward developing robust photocatalysts are highlighted, elucidating the fundamentals of charge separation and transfer processes and advanced probing techniques. The atomic-level bulk charge separation strategies, embodied by regulation of charge movement pathway and migration dynamic, boil down to shortening the charge diffusion distance to the atomic-scale, establishing atomic-level charge transfer channels, and enhancing the charge separation driving force. Meanwhile, regulating the in-plane surface structure and spatial surface structure are summarized as atomic-level surface charge separation strategies. Moreover, collaborative strategies for simultaneous manipulation of bulk and surface photocharges are also introduced. Finally, the existing challenges and future prospects for fabrication of state-of-the-art photocatalysts are discussed on the basis of a thorough comprehension of atomic-level charge separation strategies.
Collapse
Affiliation(s)
- Fang Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Tianyi Ma
- Discipline of Chemistry, School of Environmental & Life Sciences, The University of Newcastle (UON), Callaghan, NSW, 2308, Australia
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
18
|
Cen Z, Kang Y, Lu R, Yu A. Electrostatic interaction mechanism of visible light absorption broadening in ion-doped graphitic carbon nitride. RSC Adv 2021; 11:22652-22660. [PMID: 35480457 PMCID: PMC9034361 DOI: 10.1039/d1ra02617h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
H2O2 treated K-doped graphitic carbon nitride presents an enhanced visible light absorption, which is due to the electrostatic attraction between K ions and OOH ions inside graphitic carbon nitride.
Collapse
Affiliation(s)
- Zengyu Cen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Yuna Kang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Rong Lu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Anchi Yu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| |
Collapse
|
19
|
Zhang J, Frank BD, Kumru B, Schmidt BVKJ. Graphitic Carbon Nitride Stabilized Water-in-Water Emulsions. Macromol Rapid Commun 2020; 42:e2000433. [PMID: 33103292 DOI: 10.1002/marc.202000433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/03/2020] [Indexed: 01/19/2023]
Abstract
Aqueous multiphase systems have attracted a lot of interest recently espeically due to target applications in the biomedical field, cosmetics, and food. In turn, water-in-water Pickering emulsions are investigated frequently. In here, graphitic carbon nitride (g-CN) stabilized water-in-water Pickering emulsions are fabricated via the dextran and poly(ethylene glycol)-based aqueous two-phase system. Five different derivatives of g-CN as the Pickering stabilizer are described and the effect of g-CN concentration on droplet sizes is investigated. Stable emulsions (up to 16 weeks) are obtained that can be broken on purpose via various approaches, including dilution, surfactant addition, and most notably light irradiation. The novel approach of water-in-water emulsion stabilization via g-CN opens up considerable advances in aqueous multiphase systems and may also introduce photocatalytic properties.
Collapse
Affiliation(s)
- Jianrui Zhang
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Bradley D Frank
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Bernhard V K J Schmidt
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany.,School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
20
|
Rahman M, Tian H, Edvinsson T. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. Angew Chem Int Ed Engl 2020; 59:16278-16293. [PMID: 32329950 PMCID: PMC7540687 DOI: 10.1002/anie.202002561] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/02/2022]
Abstract
In pursuit of inexpensive and earth abundant photocatalysts for solar hydrogen production from water, conjugated polymers have shown potential to be a viable alternative to widely used inorganic counterparts. The photocatalytic performance of polymeric photocatalysts, however, is very poor in comparison to that of inorganic photocatalysts. Most of the organic photocatalysts are active in hydrogen production only when a sacrificial electron donor (SED) is added into the solution, and their high performances often rely on presence of noble metal co-catalyst (e.g. Pt). For pursuing a carbon neutral and cost-effective green hydrogen production, unassisted hydrogen production solely from water is one of the critical requirements to translate a mere bench-top research interest into the real world applications. Although this is a generic problem for both inorganic and organic types of photocatalysts, organic photocatalysts are mostly investigated in the half-reaction, and have so far shown limited success in hydrogen production from overall water-splitting. To make progress, this article exclusively discusses critical factors that are limiting the overall water-splitting in organic photocatalysts. Additionally, we also have extended the discussion to issues related to stability, accurate reporting of the hydrogen production as well as challenges to be resolved to reach 10 % STH (solar-to-hydrogen) conversion efficiency.
Collapse
Affiliation(s)
- Mohammad Rahman
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala UniversitySweden
| | - Haining Tian
- Department of ChemistryDivision of Physical chemistryAngstrom LaboratoryUppsala UniversitySweden
| | - Tomas Edvinsson
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala UniversitySweden
| |
Collapse
|
21
|
Wang H, Jin S, Zhang X, Xie Y. Excitonic Effects in Polymeric Photocatalysts. Angew Chem Int Ed Engl 2020; 59:22828-22839. [DOI: 10.1002/anie.202002241] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Sen Jin
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaodong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| |
Collapse
|
22
|
Affiliation(s)
- Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Sen Jin
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaodong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| |
Collapse
|
23
|
Zhang Z, Yang Z, Chen X, Hu D, Hong Y. Facile gradient oxidation synthesizing of highly-fluorescent MoO3 quantum dots for Cr2O72− trace sensing. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Patel J, Yuan X, Marinho SM, Leibl W, Remita H, Aukauloo A. Visible light-driven simultaneous water oxidation and quinone reduction by a nano-structured conjugated polymer without co-catalysts. Chem Sci 2020; 11:7324-7328. [PMID: 32953035 PMCID: PMC7480499 DOI: 10.1039/d0sc02122a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
In artificial photosynthesis, chemists are aiming to borrow principles from natural photosynthesis to develop photoelectrochemical cells (PEC) for water splitting. The water plastoquinone photo-oxidoreductase enzyme, also known as photosystem II, uses light to perform the four-electron, four-proton oxidation of water to dioxygen and stores reducing equivalents in reduced forms of quinones which are ultimately used in dark reactions for the synthesis of energy-rich molecules. We report a nano-structured semiconducting conjugated polymer based on poly(diphenylbutadiyne) (nano-PDPB) and its photocatalytic activities towards the water oxidation reaction under visible light irradiation when dispersed in water in the absence of any sacrificial agents or co-catalysts. Charge recovery at the nano-PDPB directly or delayed in time was exemplified by the reduction of quinone acting as a hydrogen reservoir. In the absence of quinones as electron acceptors H2O2 formation was detected, stemming from the partial reduction of O2.
Collapse
Affiliation(s)
- Jully Patel
- Institut des Sciences du vivant Frédéric Joliot , SB2SM/Institut de Biologie Intégrative de la Cellule I2BC , UMR 9198 , CEA , CNRS , Université Paris Sud , F-91191 Gif sur Yvette , France .
| | - Xiaojiao Yuan
- Institut de Chimie Physique (ICP) , UMR 8000 CNRS , Université Paris Sud , Université Paris-Saclay , F-91405 Orsay Cedx , France .
| | - Stéphanie Mendes Marinho
- Institut des Sciences du vivant Frédéric Joliot , SB2SM/Institut de Biologie Intégrative de la Cellule I2BC , UMR 9198 , CEA , CNRS , Université Paris Sud , F-91191 Gif sur Yvette , France .
| | - Winfried Leibl
- Institut des Sciences du vivant Frédéric Joliot , SB2SM/Institut de Biologie Intégrative de la Cellule I2BC , UMR 9198 , CEA , CNRS , Université Paris Sud , F-91191 Gif sur Yvette , France .
| | - Hynd Remita
- Institut de Chimie Physique (ICP) , UMR 8000 CNRS , Université Paris Sud , Université Paris-Saclay , F-91405 Orsay Cedx , France .
| | - Ally Aukauloo
- Institut des Sciences du vivant Frédéric Joliot , SB2SM/Institut de Biologie Intégrative de la Cellule I2BC , UMR 9198 , CEA , CNRS , Université Paris Sud , F-91191 Gif sur Yvette , France .
- Institut de Chimie Moléculaire et des Matériaux d'Orsay , UMR-CNRS 8182 , Université Paris-Sud , Paris-Saclay , F-91405 Orsay , France .
| |
Collapse
|
25
|
Guo X, Hu K, Chu M, Li Y, Bian J, Qu Y, Chu X, Yang F, Zhao Q, Qin C, Jing L. Mg-O-Bridged Polypyrrole/g-C 3 N 4 Nanocomposites as Efficient Visible-Light Catalysts for Hydrogen Evolution. CHEMSUSCHEM 2020; 13:3707-3717. [PMID: 32134177 DOI: 10.1002/cssc.202000280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Indexed: 06/10/2023]
Abstract
It is highly desired to improve the visible-light activity of g-C3 N4 for H2 evolution by constructing closely contacted heterojunctions with conductive polymers. Herein, a polymer nanocomposite photocatalyst with high visible-light activity is fabricated successfully by coupling nanosized polypyrrole (NPPy) particles onto g-C3 N4 nanosheets through a simple wet-chemical process, and its visible-light activity is improved further by constructing Mg-O bridges between the NPPy and g-C3 N4 . The amount-optimized bridged nanocomposite displays an approximately ninefold improvement in visible-light activity compared with g-C3 N4 . On the basis of transient-state surface photovoltage responses, photoluminescence spectra, . OH amount evaluation, and photoelectrochemical curves, it is concluded that the exceptional photoactivity can be attributed to the significantly promoted charge transfer and separation along with visible photosensitization from NPPy. Interestingly, it is confirmed that the promoted charge separation depends mainly on the excited high-level electron transfer from g-C3 N4 to NPPy by single-wavelength photocurrent action spectra. This work provides a feasible strategy for designing polymer nano-heterojunction photocatalysts with exceptional visible-light activities.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Kang Hu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Mingna Chu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yong Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ji Bian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yang Qu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xiaoyu Chu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Fan Yang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Qi Zhao
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Chuanli Qin
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
26
|
Rahman M, Tian H, Edvinsson T. Revisiting the Limiting Factors for Overall Water‐Splitting on Organic Photocatalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad Rahman
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala University Sweden
| | - Haining Tian
- Department of ChemistryDivision of Physical chemistryAngstrom LaboratoryUppsala University Sweden
| | - Tomas Edvinsson
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala University Sweden
| |
Collapse
|
27
|
Gangadhar PS, Gonuguntla S, Madanaboina S, Islavath N, Pal U, Giribabu L. Unravelling the impact of thiophene auxiliary in new porphyrin sensitizers for high solar energy conversion. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
A 3D Hierarchical Pancake-Like Porous Carbon Nitride for Highly Enhanced Visible-Light Photocatalytic H2 Evolution. Catalysts 2020. [DOI: 10.3390/catal10010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Polymeric carbon nitride is a fascinating visible-light-response metal-free semiconductor photocatalyst in recent decades. Nevertheless, the photocatalytic H2 efficiency is unsatisfactory due to the insufficient visible-light harvesting capacity and low quantum yields caused by the bulky structure seriously limited its applications. To overcome these defects, in this research, a 3D hierarchical pancake-like porous carbon nitride (PPCN) was successfully fabricated by a facile bottom-up method. The as-prepared photocatalyst exhibit enlarged surface area, enriched reactive sites, improved charge carrier transformation and separation efficiency, and expanded bandgap with a more negative conduction band towardan enhanced reduction ability. All these features synergistically enhanced the photocatalytic H2 evolution efficiency of 3% Pt@PPCN (430 µmol g−1 h−1) under the visible light illumination (λ ≥ 420 nm), which was nine-fold higher than that of 3% Pt@bulk C3N4 (BCN) (45 µmol g−1 h−1). The improved structure and enhanced photoelectric properties were systematically investigated by different characterization techniques. This research may provide an insightful synthesis strategy for polymeric carbon nitride with excellent light-harvesting capacity and enhanced separation of charges toward remarkable photocatalytic H2 for water splitting.
Collapse
|
29
|
Rahman MZ, Kibria MG, Mullins CB. Metal-free photocatalysts for hydrogen evolution. Chem Soc Rev 2020; 49:1887-1931. [DOI: 10.1039/c9cs00313d] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article provides a comprehensive review of the latest progress, challenges and recommended future research related to metal-free photocatalysts for hydrogen productionviawater-splitting.
Collapse
Affiliation(s)
- Mohammad Ziaur Rahman
- John J. Mcketta Department of Chemical Engineering and Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering
- University of Calgary
- 2500 University Drive
- NW Calgary
- Canada
| | - Charles Buddie Mullins
- John J. Mcketta Department of Chemical Engineering and Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
30
|
Zhu A, Qiao L, Tan P, Pan J. Interfaces of graphitic carbon nitride-based composite photocatalysts. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01026j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review concentrates on the interface issues of g-C3N4-based photocatalysts, including methods for constructing interfaces, techniques for identifying interfaces, and the types and roles of the as-developed interfaces.
Collapse
Affiliation(s)
- Anquan Zhu
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| | - Lulu Qiao
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy
- Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
31
|
Hayat A, Shaishta N, Mane SKB, Khan J, Hayat A. Rational Ionothermal Copolymerization of TCNQ with PCN Semiconductor for Enhanced Photocatalytic Full Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46756-46766. [PMID: 31762261 DOI: 10.1021/acsami.9b15537] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic full water splitting remains the perfect way to generate oxygen (O2) and hydrogen (H2) gases driven by sunlight to address the future environmental issues as well as energy demands. Owing to its exceptional properties, polymeric carbon nitride (PCN) has been one of the most widely investigated semiconductor photocatalysts. Nevertheless, blank PCN characteristically displays restrained photocatalytic performance due to high-density defects in its framework that may perhaps perform the part of the recombination midpoint for photoproduced electron-hole pairs. Therefore, to overcome this problem, a simple approach to introduce 7,7,8,8-tetracyanoquinodimethane (TCNQ) with an electron-withdrawing characteristic modifier into the pristine PCN framework by the ionothermal method to enhance its optical, conductive, and photocatalytic properties has been undertaken. Results show that such integration of TCNQ results in the delocalization of the π-conjugated structure; significant changes in its chemical electronic configuration, band gap, and surface area; and enhanced production of electrons under visible light. As a result of this facile integration, our best sample (CNU-TCNQ9.0) produced a hydrogen evolution rate (HER) of 164.6 μmol h-1 for H2 and an oxygen evolution rate (OER) of 14.8 μmol h-1 for O2, which were found to be 2.4- and 2.6-fold greater than those produced with pure carbon nitride (CNU) sample, respectively. Hence, this work provides a reasonable alternative method to synthesize and design novel CNU-TCNQ backbone photocatalyst for organic photosynthesis, CO2 reduction, hydrogen evolution, etc.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry , Fuzhou University , Fuzhou 350 002 , P. R. China
| | - Naghma Shaishta
- Department of Post-Graduate Studies and Research in Chemistry , Gulbarga University , Gulbarga 585106 , India
| | - Sunil Kumar Baburao Mane
- Department of Post-Graduate Studies and Research in Chemistry , Gulbarga University , Gulbarga 585106 , India
- School of Chemistry , Sun Yat-sen University , Guangzhou 510 275 , P. R. China
| | - Javid Khan
- School of Chemistry , Sun Yat-sen University , Guangzhou 510 275 , P. R. China
| | - Ashiq Hayat
- Department of Physics , Quaid Azam University , Islamabad 45320 , Pakistan
| |
Collapse
|
32
|
Zhao C, Tang H, Liu W, Han C, Yang X, Liu Q, Xu J. Constructing 0D FeP Nanodots/2D g‐C
3
N
4
Nanosheets Heterojunction for Highly Improved Photocatalytic Hydrogen Evolution. ChemCatChem 2019. [DOI: 10.1002/cctc.201901489] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chengxiao Zhao
- College of Science Institute of Materials Physics and ChemistryNanjing Forestry University Nanjing 210037 P. R. China
| | - Hua Tang
- School of Materials Science & EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Wei Liu
- School of Materials Science & EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Chenhui Han
- School of Chemistry, Physics and Mechanical EngineeringQueensland University of Technology Brisbane QLD 4001 Australia
| | - Xiaofei Yang
- College of Science Institute of Materials Physics and ChemistryNanjing Forestry University Nanjing 210037 P. R. China
- Key Laboratory for Photonic and Electronic Band Materials Ministry of EducationSchool of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| | - Qinqin Liu
- School of Materials Science & EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Jingsan Xu
- School of Chemistry, Physics and Mechanical EngineeringQueensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
33
|
Zhang B, Zhao TJ, Wang HH. Enhanced Photocatalytic Activity of Aerogel Composed of Crooked Carbon Nitride Nanolayers with Nitrogen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34922-34929. [PMID: 31476855 DOI: 10.1021/acsami.9b10123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-supported aerogel composed of carbon nitride nanolayers can act as a bifunctional photocatalyst and show enhanced photoreduction and photooxidation performance due to the large surface areas and nitrogen vacancies. The carbon nitride aerogel can catalyze hydrogen evolution at a rate of nearly 4.2 mmol h-1 g-1 and oxidize benzyl alcohols with a high conversion efficiency and selectivity under milder conditions. Note that the activity of carbon nitride aerogel for photochemical alcohol oxidation shows outstanding performance compared with carbon nitride based photocatalysts. Both density functional theory and experimental results demonstrate that the introduction of nitrogen vacancies within the carbon nitride aerogel contributes to the formation of a crooked structure and enhanced adsorption of oxygen compared with a bulk sample.
Collapse
Affiliation(s)
- Bing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Tian-Jian Zhao
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Hong-Hui Wang
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
34
|
Wang Y, Cao X, Hu Q, Liang X, Tian T, Lin J, Yue M, Ding Y. FeO x Derived from an Iron-Containing Polyoxometalate Boosting the Photocatalytic Water Oxidation Activity of Ti 3+-Doped TiO 2. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23135-23143. [PMID: 31252488 DOI: 10.1021/acsami.9b03714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of efficient and stable catalyst systems using low-cost, abundant, and nontoxic materials is the primary demand for photocatalytic water oxidation. Distinguishing the true active species in a heterogeneous catalytic system is important for construction of efficient catalytic systems. Herein, hydrothermally synthesized Ti3+ self-doped TiO2, labeled as Ti3+/TiO2, was first used as a light absorber in a powder visible light-driven photocatalytic water oxidation reaction. When an iron-containing polyoxometalate Na27[Fe11(H2O)14(OH)2(W3O10)2(α-SbW9O33)6] (Fe11) was used as a cocatalyst, an amorphous layer of active species was wrapped outside the initial Ti3+/TiO2 nanorod and the in situ formed composite was labeled as F/Ti3+/TiO2. When the composite F/Ti3+/TiO2 was tested as a photocatalytic water oxidation catalyst, dramatically improved oxygen evolution performance was achieved. The composite F/Ti3+/TiO2 showed an oxygen evolution rate of 410 μmol/g/h, which was about 11-fold higher than that of prism Ti3+/TiO2. After 24 h of illumination, an O2 yield of 36.4% was achieved. The contrast experiments, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy characterization demonstrated that FeO x is the true cocatalyst that enhanced the oxygen evolution activity of TiO2. A recycling experiment proved that the composite F/Ti3+/TiO2 has favorable stability in the oxygen production process.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Xiaohu Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Qiyu Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Xiangming Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Tian Tian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Junqi Lin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Meie Yue
- College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| |
Collapse
|
35
|
Wang D, Saleh NB, Sun W, Park CM, Shen C, Aich N, Peijnenburg WJGM, Zhang W, Jin Y, Su C. Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7265-7287. [PMID: 31199142 PMCID: PMC7388031 DOI: 10.1021/acs.est.9b01453] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon-metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy-water-environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.
Collapse
Affiliation(s)
- Dengjun Wang
- National Research Council Resident Research Associate at the United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Wenjie Sun
- Department of Civil and Environmental Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Chang Min Park
- Department of Environmental Engineering , Kyungpook National University , Buk-gu , Daegu 41566 , South Korea
| | - Chongyang Shen
- Department of Soil and Water Sciences , China Agricultural University , Beijing 100193 , China
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , The Netherlands
- Center for Safety of Substances and Products , National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven , The Netherlands
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, and Environmental Science and Policy Program , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Yan Jin
- Department of Plant and Soil Sciences , University of Delaware , Newark , Delaware 19716 , United States
| | - Chunming Su
- Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development , United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States
| |
Collapse
|
36
|
Wang Y, Li Y, Cao S, Yu J. Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63343-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Zhou C, Wang R, Jiang C, Chen J, Wang G. Dynamically Optimized Multi-interface Novel BiSI-Promoted Redox Sites Spatially Separated n–p–n Double Heterojunctions BiSI/MoS2/CdS for Hydrogen Evolution. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chengxin Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chunping Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
38
|
Rahman MZ, Mullins CB. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production. Acc Chem Res 2019; 52:248-257. [PMID: 30596234 DOI: 10.1021/acs.accounts.8b00542] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Photocatalytic solar fuel production, for example, production of hydrogen via water-splitting, is an effective means of chemical storage of solar energy and provides a potential option for achieving a zero-emissions energy system. Conveniently, hydrogen can be converted back to electricity either via fuel cells or through combustion in gas turbines, or it can be mixed in low concentrations with natural gas or biogas for combustion in existing power plants. The cornerstone of a practical solar fuel production process is a stable, efficient, and scalable photocatalyst (a semiconductor material that accommodates photon absorption, charge carrier generation and transport, and catalytic reactions). Therefore, the quest for suitable photocatalyst materials is an ongoing process. Recently, carbon nitride (CN) has attracted widespread interest as a metal-free, earth-abundant, and highly stable photocatalyst. However, the catalytic efficiency of CN is not satisfactory because of its poor charge transport attributes. There is a direct relation between the photocatalytic efficiency and charge transport because the basic principle of light-promoted overall photodecomposition of water into H2 and O2 molecules (or, generally speaking, photoredox reactions) relies on separation and subsequent transfer of excited-state electron-hole pairs to relative redox couples. However, the excited states last for a very short time, typically nanoseconds to microseconds in liquids, and unless they are separated within this time frame, the excited-state electron-hole pairs undergo recombination with release of the captured light energy as heat or photon emission. To utilize light in a form other than heat or emitted photons by avoiding the recombination of excited-state electron-hole pairs, charged excitons must be scavenged before the absorption of subsequent photons to sustain a multielectron photoredox reaction. Otherwise, the extraction of charges becomes more difficult. This imposes a potential efficiency-limiting factor. An enhancement in water to hydrogen conversion efficiency in CN therefore requires the use of precious-metal cocatalysts (e.g., Pt) and sacrificial electron donor/acceptors to facilitate multielectron/multiproton transfers to overcome the high kinetic barriers. The use of Pt and sacrificial agents is not consistent with the notion of low-cost and sustainable hydrogen production from water. CN must overcome this dependence to stand out as a truly scalable photocatalyst. To make progress, the foremost requirement is to attain an in-depth understanding of the fundamental charge transport phenomena needed for the rational design of CN-based photocatalysts. In this Account, therefore, our aim is to provide a synopsis of current understanding and progress regarding charge-transport-related phenomena (e.g., recombination, trapping, transfer of charge carriers, etc.) and to discuss the effects of charge transport in enhancing the apparent quantum yield of hydrogen production in CN. This understanding is necessary to broaden the scope of CN for other catalytic applications, for example, efficient CO2 reduction to methanol or methane, fixation of nitrogen to ammonia, and use as an active material in solar cells. We also identify research gaps and issues to be addressed for a more clear elucidation of charge-transport-related phenomena in CN. Thus, this Account may inspire new research opportunities for tuning the extrinsic/intrinsic photophysicochemical properties of CN by rational design to attain the most favorable properties for improved catalytic efficiency.
Collapse
Affiliation(s)
- Mohammad Z. Rahman
- McKetta Department of Chemical Engineering and Department of Chemistry, Texas Materials Institute and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - C. Buddie Mullins
- McKetta Department of Chemical Engineering and Department of Chemistry, Texas Materials Institute and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712-1589, United States
| |
Collapse
|
39
|
Qiu C, Xu Y, Fan X, Xu D, Tandiana R, Ling X, Jiang Y, Liu C, Yu L, Chen W, Su C. Highly Crystalline K-Intercalated Polymeric Carbon Nitride for Visible-Light Photocatalytic Alkenes and Alkynes Deuterations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801403. [PMID: 30643725 PMCID: PMC6325627 DOI: 10.1002/advs.201801403] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/21/2018] [Indexed: 05/19/2023]
Abstract
In addition to the significance of photocatalytic hydrogen evolution, the utilization of the in situ generated H/D (deuterium) active species from water splitting for artificial photosynthesis of high value-added chemicals is very attractive and promising. Herein, photocatalytic water splitting technology is utilized to generate D-active species (i.e., Dad) that can be stabilized on anchored 2nd metal catalyst and are readily for tandem controllable deuterations of carbon-carbon multibonds to produce high value-added D-labeled chemicals/pharmaceuticals. A highly crystalline K cations intercalated polymeric carbon nitride (KPCN), rationally designed, and fabricated by a solid-template induced growth, is served as an ultraefficient photocatalyst, which shows a greater than 18-fold enhancement in the photocatalytic hydrogen evolution over the bulk PCN. The photocatalytic in situ generated D-species by superior KPCN are utilized for selective deuteration of a variety of alkenes and alkynes by anchored 2nd catalyst, Pd nanoparticles, to produce the corresponding D-labeled chemicals and pharmaceuticals with high yields and D-incorporation. This work highlights the great potential of developing photocatalytic water splitting technology for artificial photosynthesis of value-added chemicals instead of H2 evolution.
Collapse
Affiliation(s)
- Chuntian Qiu
- SZU‐NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of EducationCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceShenzhen UniversityShenzhen518060China
| | - Yangsen Xu
- SZU‐NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of EducationCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xin Fan
- SZU‐NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of EducationCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Dong Xu
- Department of Civil and Environmental EngineeringNational University of Singapore1 Engineering Drive 2117576Singapore
| | - Rika Tandiana
- SZU‐NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of EducationCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xiang Ling
- SZU‐NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of EducationCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yanan Jiang
- SZU‐NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of EducationCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Cuibo Liu
- SZU‐NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of EducationCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Lei Yu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Wei Chen
- Department of ChemistryNational University of Singapore3 Science Drive 3117543Singapore
| | - Chenliang Su
- SZU‐NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of EducationCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceShenzhen UniversityShenzhen518060China
| |
Collapse
|
40
|
Xu YS, Li LP, Qiu CT, Huang XS, Li GS. Insight into the Catalytic Behavior in Nitroarenes Reduction over Non-Noble Metals Modified Polymer Carbon Nitride. ChemistrySelect 2019. [DOI: 10.1002/slct.201803451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yang-sen Xu
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education; College of Optoelectronic Engineering; Shenzhen University; Shenzhen 518060 China
| | - Li-ping Li
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Chun-tian Qiu
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education; College of Optoelectronic Engineering; Shenzhen University; Shenzhen 518060 China
| | - Xin-song Huang
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Guang-she Li
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| |
Collapse
|