1
|
Sun L, Li X, Hao L, Dong Y, Zhou L, Zhao J, Ye W, Jiang R. Microenvironment-Responsive Hydrogel Enclosed with Bioactive Nanoparticle for Synergistic Postoperative Adhesion Prevention. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39446062 DOI: 10.1021/acsami.4c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Postoperative adhesion (PA) is a severe complication of abdominal surgery caused by the inability of clinical physical barriers to cope with diverse pathological factors in the process of PA formation. Herein, we described a multifunctional hydrogel composed of bioactive nanoparticles (BNs) and dual-responsive hydrogel to serve as a combination of physical and pharmacological therapy for preventing PA. Specifically, BNs with pro-inflammatory cell-targeted aggregation were designed by integrating hyaluronic acid onto the polydopamine (PDA)-coated hollow ZrO2 nanoparticles loaded with antimicrobial peptides and platelet lysates that can eliminate bacterial infection and promote tissue repair. PDA can remove the excessive reactive oxygen species (ROS) and thus suppress the oxidative stress damage and accompanying inflammation in the presence of high ROS. The dynamically cross-linked host hydrogel presents injectable yet microenvironment-responsive properties, which enables complete coverage of the uneven tissue and instantly forms a physical barrier to effectively isolate injured tissues and neighboring organs, and synchronously acts as a niche to deliver the BNs in a controlled way. The hydrogel demonstrates a remarkable antiadhesion effect in a rat cecum-abdominal wall adhesion model. Together, this "all-in-one" composite hydrogel strategy capable of a physical barrier capability and pharmacological effects represents a promising clinical solution to prevent PA.
Collapse
Affiliation(s)
- Liwei Sun
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Xinmeng Li
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lingwan Hao
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Yanhong Dong
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lu Zhou
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Wei Ye
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
2
|
Ding Z, Liang Z, Rong X, Fu X, Fan J, Lai Y, Cai Y, Huang C, Li L, Tang G, Luo Z, Zhou Z. Janus-Structured Microgel Barrier with Tissue Adhesive and Hemostatic Characteristics for Efficient Prevention of Postoperative Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403753. [PMID: 39340270 DOI: 10.1002/smll.202403753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Indexed: 09/30/2024]
Abstract
Postoperative adhesion (POA) is a common and serious complication following various types of surgery. Current physical barriers either have a short residence time at the surgical site with a low tissue attachment capacity or are prone to undesired adhesion formation owing to the double-sided adhesive property, which limits the POA prevention efficacy of the barriers. In this study, Janus-structured microgels (Janus-MGs) with asymmetric tissue adhesion capabilities are fabricated using a novel bio-friendly gas-shearing microfluidic platform. The anti-adhesive side of Janus-MGs, which consists of alginate, hyaluronic acid, and derivatives, endows the material with separation, lubrication, and adhesion prevention properties. The adhesive side provided Janus-MGs with tissue attachment and retention capability through catechol-based adhesion, thereby enhancing the in situ adhesion prevention effect. In addition, Janus-MGs significantly reduced blood loss and shortened the hemostatic time in rats, further reducing adhesion formation. Three commonly used rat POA models with different tissue structures and motion patterns are established in this study, namely peritoneal adhesion, intrauterine adhesion, and peritendinous adhesion models, and the results showed that Janus-MGs effectively prevented the occurrence of POA in all the models. The fabrication of Janus-MGs offers a reliable strategy and a promising paradigm for preventing POA following diverse surgical procedures.
Collapse
Affiliation(s)
- Zichuan Ding
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhimin Liang
- West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiao Rong
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoxue Fu
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxuan Fan
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahao Lai
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongrui Cai
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Huang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingli Li
- West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zeyu Luo
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Chen J, An X, Xu L, Gao Y, Zhou M, Liu Z. Adhesive Nanoparticle-in-Microgel System with ROS Scavenging Capability and Hemostatic Activity for Postoperative Adhesion Prevention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306598. [PMID: 38295133 DOI: 10.1002/smll.202306598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Postoperative adhesion is a noteworthy clinical complication in abdominal surgery due to the existing physical barriers are unsatisfactory and inefficient in preventing its occurrence. In this work, an elaborate nanoparticle-in-microgel system (nMGel) is presented for postoperative adhesion prevention. nMGel is facilely formed by crosslinking manganese dioxide (MnO2) nanoparticles-loaded gelatin microspheres with polydopamine using a modified emulsification-chemical crosslinking method, generating a nano-micron spherical hydrogel. After drying, powdery nMGel with sprayability can perfectly cover irregular wounds and maintains robust tissue adhesiveness even in a wet environment. Additionally, nMGel possesses prominent antioxidant and free radical scavenging activity, which protects cell viability and preserves cell biological functions in an oxidative microenvironment. Furthermore, nMGel displays superior hemostatic property as demonstrated in mouse tail amputation models and liver trauma models. Importantly, nMGel can be conveniently administrated in a mouse cecal defect model to prevent adhesion between the injured cecum and the peritoneum by reducing inflammation, oxidative stress, collagen synthesis, and angiogenesis. Thus, the bioactive nMGel offers a practical and efficient approach for ameliorating postsurgical adhesion.
Collapse
Affiliation(s)
- Jianmei Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Li Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Ya Gao
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, P. R. China
| | - Mengqin Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zongguang Liu
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
4
|
Lu X, Xu L, Song Y, Yu X, Li Q, Liu F, Li X, Xi J, Wang S, Wang L, Wang Z. A Graphene Composite Film Based Wearable Far-Infrared Therapy Apparatus (GRAFT) for Effective Prevention of Postoperative Peritoneal Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309330. [PMID: 38526158 PMCID: PMC11165485 DOI: 10.1002/advs.202309330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Postoperative peritoneal adhesion (PPA) is the most frequent complication after abdominal surgery. Current anti-adhesion strategies largely rely on the use of physical separating barriers creating an interface blocking peritoneal adhesion, which cannot reduce inflammation and suffers from limited anti-adhesion efficacy with unwanted side effects. Here, by exploiting the alternative activated macrophages to alleviate inflammation in adhesion development, a flexible graphene-composite-film (F-GCF) generating far-infrared (FIR) irradiation that effectively modulates the macrophage phenotype toward the anti-inflammatory M2 type, resulting in reduced PPA formation, is designed. The anti-adhesion effect of the FIR generated by F-GCF is determined in the rat abdominal wall abrasion-cecum defect models, which exhibit reduced incidence and area of PPA by 67.0% and 92.1% after FIR treatment without skin damage, significantly superior to the clinically used chitosan hydrogel. Notably, within peritoneal macrophages, FIR reduces inflammation reaction and promotes tissue plasminogen activator (t-PA) level via the polarization of peritoneal macrophages through upregulating Nr4a2 expression. To facilitate clinical use, a wirelessly controlled, wearable, F-GCF-based FIR therapy apparatus (GRAFT) is further developed and its remarkable anti-adhesion ability in the porcine PPA model is revealed. Collectively, the physical, biochemical, and in vivo preclinical data provide compelling evidence demonstrating the clinical-translational value of FIR in PPA prevention.
Collapse
Affiliation(s)
- Xiaohuan Lu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu Song
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiangnan Yu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Qilin Li
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Feng Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiaoqiong Li
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiangbo Xi
- School of Chemistry and Environmental EngineeringWuhan Institute of TechnologyWuhan430205China
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationDepartment of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Lin Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
5
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
6
|
Zhang P, Gong Y, Pan Q, Fan Z, Li G, Pei M, Zhang J, Wang T, Zhou G, Wang X, Ren W. Multifunctional calcium polyphenol networks reverse the hostile microenvironment of trauma for preventing postoperative peritoneal adhesions. Biomater Sci 2023; 11:6848-6861. [PMID: 37646188 DOI: 10.1039/d3bm01091k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abdominal adhesions, a commonly observed complication of abdominal surgery, have a high incidence and adversely affect patients' physical and mental health. The primary causes of abdominal adhesions are intraoperative trauma, acute inflammatory response, bleeding, and foreign body infection. Because most current treatment approaches for abdominal adhesions are limited, improved and novel postoperative anti-adhesion regimens are urgently needed. In this study, we developed calcium polyphenol network (CaPN) microspheres based on the self-assembly of the natural triphenolic compound gallic acid and Ca2+ in solution. The physicochemical properties of CaPNs, including their hemostatic, antibacterial, antioxidant, and anti-inflammatory activities, were investigated in vitro. Bleeding and cecal-abdominal wall adhesion models were established to observe the hemostatic activity of CaPNs and their preventive effect on postoperative abdominal wall adhesion in vivo. The results showed that CaPNs significantly reduced inflammation, oxidative stress, fibrosis, and abdominal adhesion formation and had good hemostatic and antibacterial properties. Our findings suggest a novel strategy for the prevention of postoperative adhesions.
Collapse
Affiliation(s)
- Pei Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Yan Gong
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingqing Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zhenlin Fan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Genke Li
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Mengyu Pei
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Junhe Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Tianyun Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Guangdong Zhou
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiansong Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
- Department of Orthopedics, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| |
Collapse
|
7
|
Cai J, Guo J, Wang S. Application of Polymer Hydrogels in the Prevention of Postoperative Adhesion: A Review. Gels 2023; 9:gels9020098. [PMID: 36826268 PMCID: PMC9957106 DOI: 10.3390/gels9020098] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Postoperative adhesion is a common post-surgery complication formed between the surface of the body cavity, ranging from a layer of connective tissue to a fibrous bridge containing blood vessels and nerve tissue. Despite achieving a lot of progress, the mechanisms of adhesion formation still need to be further studied. In addition, few current treatments are consistently effective in the prevention of postoperative adhesion. Hydrogel is a kind of water-expanding crosslinked hydrophilic polymer network generated by a simple reaction of one or more monomers. Due to the porous structure, hydrogels can load different drugs and control the drug release kinetics. Evidence from existing studies has confirmed the feasibility and superiority of using hydrogels to counter postoperative adhesions, primarily due to their outstanding antifouling ability. In this review, the current research status of hydrogels as anti-adhesion barriers is summarized, the character of hydrogels in the prevention of postoperative adhesion is briefly introduced, and future research directions are discussed.
Collapse
Affiliation(s)
- Jie Cai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
- Correspondence:
| |
Collapse
|
8
|
Wang R, Guo T, Li J. Mechanisms of Peritoneal Mesothelial Cells in Peritoneal Adhesion. Biomolecules 2022; 12:biom12101498. [PMID: 36291710 PMCID: PMC9599397 DOI: 10.3390/biom12101498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial–mesenchymal transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the treatment and prevention of PAs.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
9
|
Zhou J, Zhang H, Fareed MS, He Y, Lu Y, Yang C, Wang Z, Su J, Wang P, Yan W, Wang K. An Injectable Peptide Hydrogel Constructed of Natural Antimicrobial Peptide J-1 and ADP Shows Anti-Infection, Hemostasis, and Antiadhesion Efficacy. ACS NANO 2022; 16:7636-7650. [PMID: 35533290 DOI: 10.1021/acsnano.1c11206] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Postoperative adhesion is a common complication of abdominal surgery, which always has many adverse effects in patients. At present, there is still a lack of effective treatment measures and materials to prevent adhesion in the clinics. Herein, we report the potential use of J-1-ADP hydrogel formed by natural antimicrobial peptide jelleine-1 (J-1) self-assembling in adenosine diphosphate (ADP) sodium solution to prevent postsurgery adhesion formation. J-1-ADP hydrogel was found to have good antimicrobial activity against the bacteria and fungi tested and can be used to prevent tissue infection, which was thought to be one of the incitements of adhesion. Due to ADP being a platelet-activating factor, J-1-ADP hydrogel showed significant hemostatic activity in vitro verified by whole blood coagulation, plasma coagulation, platelet activation, and platelet adhesion assays. Further, it showed potent hemostatic activity in a mouse liver hemorrhage model. Bleeding was believed to be a cause of the formation of postsurgery adhesion. J-1-ADP hydrogel had a significant antiadhesion effect in a rat side wall defect-cecum abrasion model. In addition, it had good biocompatibility and degradation properties. So the present study may provide an alternative strategy for designing antimicrobial peptide hydrogel material to prevent postoperative adhesion formation in the clinic.
Collapse
Affiliation(s)
| | - Hanru Zhang
- Department of Obstetrics & Gynecology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou 730000, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Song X, Zhang Z, Shen Z, Zheng J, Liu X, Ni Y, Quan J, Li X, Hu G, Zhang Y. Facile Preparation of Drug-Releasing Supramolecular Hydrogel for Preventing Postoperative Peritoneal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56881-56891. [PMID: 34797976 DOI: 10.1021/acsami.1c16269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels have attracted widespread attention for breaking the bottlenecks faced during facile drug delivery. To date, the preparation of jelly carriers for hydrophobic drugs remains challenging. In this study, by evaporating ethanol to drive the formation of hydrogen bonds, hydrophilic poly(vinyl alcohol) (PVA) and certain hydrophobic compounds [luteolin (LUT), quercetin (QUE), and myricetin (MYR)] were rapidly prepared into supramolecular hydrogel within 10 min. The gelation performance of these three hydrogels changed regularly with the changing sequence of LUT, QUE, and MYR. An investigation of the gelation pathway of these hybrid gels reveals that the formation of this type of gel follows a simple supramolecular self-assembly process, called "hydrophobe-hydrophile crosslinked gelation". Because the hydrogen bond between PVA and the drug is noncovalent and reversible, the hydrogel has good plasticity and self-healing properties, while the drugs can be controllably released by tuning the output stimuli. Using a rat sidewall-cecum abrasion adhesion model, the as-prepared hydrogel was highly efficient and safe in preventing postsurgical adhesion. This work provides a useful archetypical template for researchers interested in the efficient delivery and controllable release of hydrophobic drugs.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|