1
|
Lin J, Zhang Q, Xie T, Wu Z, Hou Y, Song Y, Lin Y, Lin JM. Understanding Macrophage-Tumor Interactions: Insights from Single-Cell Behavior Monitoring in a Sessile Microdroplet System. SMALL METHODS 2024; 8:e2301659. [PMID: 38623914 DOI: 10.1002/smtd.202301659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Interaction between tumor-associated macrophages and tumor cells is crucial for tumor development, metastasis, and the related immune process. However, the macrophages are highly heterogeneous spanning from anti-tumorigenic to pro-tumorigenic, which needs to be understood at the single-cell level. Herein, a sessile microdroplet system designed for monitoring cellular behavior and analyzing intercellular interaction, demonstrated with macrophage-tumor cell pairs is presented. An automatic procedure based on the inkjet printing method is utilized for the precise pairing and co-encapsulation of heterotypic cells within picoliter droplets. The sessile nature of microdroplets ensures controlled fusion and provides stable environments conducive to adherent cell culture. The nitric oxide generation and morphological changes over incubation are explored to reveal the complicated interactions from a single-cell perspective. The immune response of macrophages under distinct cellular microenvironments is recorded. The results demonstrate that the tumor microenvironment displays a modulating role in polarizing macrophages from anti-tumorigenic into pro-tumorigenic phenotype. The approach provides a versatile and compatible platform to investigate intercellular interaction at the single-cell level, showing promising potential for advancing single-cell behavior studies.
Collapse
Affiliation(s)
- Jiaxu Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Tianze Xie
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zengnan Wu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Ying Hou
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yang Song
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yongning Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
3
|
Agüera-Lorente A, Alonso-Pardavila A, Larrinaga M, Boyano MD, González E, Falcón-Pérez JM, Asumendi A, Apraiz A. Small extracellular vesicle-based human melanocyte and melanoma signature. Pigment Cell Melanoma Res 2024; 37:569-582. [PMID: 38158521 DOI: 10.1111/pcmr.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Intercellular communication is a cell-type and stimulus-dependent event driven not only by soluble factors but also by extracellular vesicles (EVs). EVs include vesicles of different size and origin that contain a myriad of molecules. Among them, small EVs (sEV; <200 nm) have been shown to modulate not just regional cell responses but also distant organ behavior. In cancer, distant organ modulation by sEVs has been associated to disease dissemination, which is one of the main concerns in melanoma. Description of broadly conserved alterations in sEV-contained molecules represents a strategy to identify key modifications in cellular communication as well as new disease biomarkers. Here, we characterize proteomes of cutaneous melanocyte and melanoma-derived sEVs to deepen on the landscape of normal and disease-related cell communication. Results reveal the presence of unique protein signatures for melanocytes and melanoma cells that reflect cellular transformation-related profound modifications. Melanocyte-derived sEVs are enriched in oxidative metabolism (e.g., aconitase 2, ACO2) or pigmentation (e.g., tyrosinase, TYR) related proteins while melanoma-derived sEVs reflect a generalized decrease in mature melanocytic markers (e.g., melanoma antigen recognized by T-cells 1, MART-1, also known as MLANA) and an increase in epithelial to mesenchymal transition (EMT)-related adhesion molecules such as tenascin C (TNC).
Collapse
Affiliation(s)
- Andrea Agüera-Lorente
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, Leioa, Spain
| | | | - María Larrinaga
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, Leioa, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Esperanza González
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Metabolomics Platform, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
4
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
5
|
Almeida-Pinto J, Moura BS, Gaspar VM, Mano JF. Advances in Cell-Rich Inks for Biofabricating Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313776. [PMID: 38639337 DOI: 10.1002/adma.202313776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.
Collapse
Affiliation(s)
- José Almeida-Pinto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Beatriz S Moura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
6
|
Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communication. Nat Rev Genet 2024; 25:381-400. [PMID: 38238518 PMCID: PMC11139546 DOI: 10.1038/s41576-023-00685-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 05/20/2024]
Abstract
No cell lives in a vacuum, and the molecular interactions between cells define most phenotypes. Transcriptomics provides rich information to infer cell-cell interactions and communication, thus accelerating the discovery of the roles of cells within their communities. Such research relies heavily on algorithms that infer which cells are interacting and the ligands and receptors involved. Specific pressures on different research niches are driving the evolution of next-generation computational tools, enabling new conceptual opportunities and technological advances. More sophisticated algorithms now account for the heterogeneity and spatial organization of cells, multiple ligand types and intracellular signalling events, and enable the use of larger and more complex datasets, including single-cell and spatial transcriptomics. Similarly, new high-throughput experimental methods are increasing the number and resolution of interactions that can be analysed simultaneously. Here, we explore recent progress in cell-cell interaction research and highlight the diversification of the next generation of tools, which have yielded a rich ecosystem of tools for different applications and are enabling invaluable discoveries.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Cadavid JL, Li NT, McGuigan AP. Bridging systems biology and tissue engineering: Unleashing the full potential of complex 3D in vitro tissue models of disease. BIOPHYSICS REVIEWS 2024; 5:021301. [PMID: 38617201 PMCID: PMC11008916 DOI: 10.1063/5.0179125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Rapid advances in tissue engineering have resulted in more complex and physiologically relevant 3D in vitro tissue models with applications in fundamental biology and therapeutic development. However, the complexity provided by these models is often not leveraged fully due to the reductionist methods used to analyze them. Computational and mathematical models developed in the field of systems biology can address this issue. Yet, traditional systems biology has been mostly applied to simpler in vitro models with little physiological relevance and limited cellular complexity. Therefore, integrating these two inherently interdisciplinary fields can result in new insights and move both disciplines forward. In this review, we provide a systematic overview of how systems biology has been integrated with 3D in vitro tissue models and discuss key application areas where the synergies between both fields have led to important advances with potential translational impact. We then outline key directions for future research and discuss a framework for further integration between fields.
Collapse
|
8
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Tracking of Nascent Matrix Deposition during Muscle Stem Cell Activation across Lifespan Using Engineered Hydrogels. Adv Biol (Weinh) 2024; 8:e2400091. [PMID: 38616175 DOI: 10.1002/adbi.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, muscle stem cells increased nascent matrix deposition with activation kinetics. Reducing the ability to deposit nascent matrix by an inhibitor of vesicle trafficking (Exo-1) attenuated muscle stem cell function and mimicked impairments observed from muscle stem cells isolated from old muscles. Old muscle stem cells are observed to deposit less nascent matrix than young muscle stem cells, which is rescued with therapeutic supplementation of insulin-like growth factors. These results highlight the role of nascent matrix production with muscle stem cell activation.
Collapse
Affiliation(s)
- Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleanor Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024; 22:285. [PMID: 38790068 PMCID: PMC11118732 DOI: 10.1186/s12964-024-01663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Juyue Luo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
10
|
Helms HR, Oyama KA, Ware JP, Ibsen SD, Bertassoni LE. Multiplex Single-Cell Bioprinting for Engineering of Heterogeneous Tissue Constructs with Subcellular Spatial Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578499. [PMID: 38352428 PMCID: PMC10862823 DOI: 10.1101/2024.02.01.578499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Tissue development, function, and disease are largely driven by the spatial organization of individual cells and their cell-cell interactions. Precision engineered tissues with single-cell spatial resolution, therefore, have tremendous potential for next generation disease models, drug discovery, and regenerative therapeutics. Despite significant advancements in biofabrication approaches to improve feature resolution, strategies to fabricate tissues with the exact same organization of individual cells in their native cellular microenvironment have remained virtually non-existent to date. Here we report a method to spatially pattern single cells with up to eight cell phenotypes and subcellular spatial precision. As proof-of-concept we first demonstrate the ability to systematically assess the influence of cellular microenvironments on cell behavior by controllably altering the spatial arrangement of cell types in bioprinted precision cell-cell interaction arrays. We then demonstrate, for the first time, the ability to produce high-fidelity replicas of a patient's annotated cancer biopsy with subcellular resolution. The ability to replicate native cellular microenvironments marks a significant advancement for precision biofabricated in-vitro models, where heterogenous tissues can be engineered with single-cell spatial precision to advance our understanding of complex biological systems in a controlled and systematic manner.
Collapse
Affiliation(s)
- Haylie R Helms
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Kody A Oyama
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Jason P Ware
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Stuart D Ibsen
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Luiz E Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Division of Biomaterials and Biomechanics, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| |
Collapse
|
11
|
Otte EA, Smith TN, Glass N, Wolvetang EJ, Cooper-White JJ. Exploring the cell interactome: deciphering relative impacts of cell-cell communication in cell co-culture using a novel microfluidic device. LAB ON A CHIP 2024; 24:537-548. [PMID: 38168806 DOI: 10.1039/d3lc00670k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common in vivo. Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors. There is currently no systematic method to investigate the relative contributions of these mechanisms to cell behaviour. In this paper, we detail the conception, development and validation of a microfluidic device that allows cell-cell contact and paracrine signalling in defined areas and over a variety of biologically relevant length scales, referred to as the interactome-device or 'I-device'. Importantly, by intrinsic device design features, cells in different regions in the device are exposed to four different interaction types, including a) no heterotypic cell interaction, b) only paracrine signalling, c) only cell-cell direct contact, or d) both forms of interaction (paracrine and cell-cell direct contact) together. The device design was validated by both mathematical modelling and experiments. Perfused stem cell culture over the medium term and the formation of direct contact between cells in the culture chambers was confirmed. The I-device offers significant flexibility, being able to be applied to any combination of adherent cells to determine the relative contributions of different communication mechanisms to cellular outcomes.
Collapse
Affiliation(s)
- Ellen A Otte
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing, Clayton, VIC, Australia
| | - Taryn N Smith
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, Australia
| | - Nick Glass
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Ernst J Wolvetang
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing, Clayton, VIC, Australia
| |
Collapse
|
12
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Quantification of local matrix deposition during muscle stem cell activation using engineered hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576326. [PMID: 38328131 PMCID: PMC10849481 DOI: 10.1101/2024.01.20.576326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells remodel their microenvironment remains an open-ended question. Herein, biomaterials-based systems and metabolic labeling were utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts were observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, the increased nascent matrix deposition was associated with stem cell activation. Reducing the ability to deposit nascent matrix in muscle stem cells attenuated function and mimicked impairments observed from muscle stem cells isolated from old aged muscles, which could be rescued with therapeutic supplementation of insulin-like growth factors. These results highlight how nascent matrix production is critical for maintaining healthy stem cell function.
Collapse
Affiliation(s)
- Pamela Duran
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eleanor Plaster
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Madeline Eiken
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Moghimianavval H, Mohapatra S, Liu AP. A Mammalian-Based Synthetic Biology Toolbox to Engineer Membrane-Membrane Interfaces. Methods Mol Biol 2024; 2774:43-58. [PMID: 38441757 DOI: 10.1007/978-1-0716-3718-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Intercellular membrane-membrane interfaces are compartments with specialized functions and unique biophysical properties that are essential in numerous cellular processes including cell signaling, development, and immunity. Using synthetic biology to engineer or to create novel cellular functions in the intercellular regions has led to an increasing need for a platform that allows generation of functionalized intercellular membrane-membrane interfaces. Here, we present a synthetic biology platform to engineer functional membrane-membrane interfaces using a pair of dimerizing proteins in both cell-free and cellular environments. We envisage this platform to be a helpful tool for synthetic biologists who wish to engineer novel intercellular signaling and communication systems.
Collapse
Affiliation(s)
| | - Sonisilpa Mohapatra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Zhu L, Tang Q, Mao Z, Chen H, Wu L, Qin Y. Microfluidic-based platforms for cell-to-cell communication studies. Biofabrication 2023; 16:012005. [PMID: 38035370 DOI: 10.1088/1758-5090/ad1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Intercellular communication is critical to the understanding of human health and disease progression. However, compared to traditional methods with inefficient analysis, microfluidic co-culture technologies developed for cell-cell communication research can reliably analyze crucial biological processes, such as cell signaling, and monitor dynamic intercellular interactions under reproducible physiological cell co-culture conditions. Moreover, microfluidic-based technologies can achieve precise spatial control of two cell types at the single-cell level with high throughput. Herein, this review focuses on recent advances in microfluidic-based 2D and 3D devices developed to confine two or more heterogeneous cells in the study of intercellular communication and decipher the advantages and limitations of these models in specific cellular research scenarios. This review will stimulate the development of more functionalized microfluidic platforms for biomedical research, inspiring broader interests across various disciplines to better comprehend cell-cell communication and other fields, such as tumor heterogeneity and drug screening.
Collapse
Affiliation(s)
- Lvyang Zhu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Huanhuan Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Sümbelli Y, Mason AF, van Hest JCM. Toward Artificial Cell-Mediated Tissue Engineering: A New Perspective. Adv Biol (Weinh) 2023; 7:e2300149. [PMID: 37565690 DOI: 10.1002/adbi.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/12/2023]
Abstract
The fast-growing pace of regenerative medicine research has allowed the development of a range of novel approaches to tissue engineering applications. Until recently, the main points of interest in the majority of studies have been to combine different materials to control cellular behavior and use different techniques to optimize tissue formation, from 3-D bioprinting to in situ regeneration. However, with the increase of the understanding of the fundamentals of cellular organization, tissue development, and regeneration, has also come the realization that for the next step in tissue engineering, a higher level of spatiotemporal control on cell-matrix interactions is required. It is proposed that the combination of artificial cell research with tissue engineering could provide a route toward control over complex tissue development. By equipping artificial cells with the underlying mechanisms of cellular functions, such as communication mechanisms, migration behavior, or the coherent behavior of cells depending on the surrounding matrix properties, they can be applied in instructing native cells into desired differentiation behavior at a resolution not to be attained with traditional matrix materials.
Collapse
Affiliation(s)
- Yiğitcan Sümbelli
- Department of Biomedical Engineering, Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| | - Alexander F Mason
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jan C M van Hest
- Department of Biomedical Engineering, Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| |
Collapse
|
16
|
Li N, Li C, Li B, Li C, Zhao Q, Huang Z, Shu Y, Qu X, Wang B, Li S, Xing C. Dual Activation of Calcium Channels Using Near-Infrared Responsive Conjugated Oligomer Nanoparticles for Precise Regulation of Blood Glucose Homeostasis. NANO LETTERS 2023; 23:10608-10616. [PMID: 37948661 DOI: 10.1021/acs.nanolett.3c03701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The rarity of efficient tools with spatiotemporal resolution and biocompatibility capabilities remains a major challenge for further progress and application of signaling manipulation. Herein, biomimetic conjugated oligomeric nanoparticles (CM-CONs) were developed to precisely modulate blood glucose homeostasis via the two-pronged activation of calcium channels. Under near-infrared (NIR) laser irradiation, CM-CONs efficiently generate local heat and reactive oxygen species (ROS), thereby simultaneously activating thermosensitive transient receptor potential V1 (TRPV1) and ROS-sensitive transient receptor potential A1 (TRPA1) calcium channels in small intestinal endocrine cells. The activation of the channels mediates inward calcium flow and then promotes glucagon-like peptide (GLP-1) secretion. Both in vitro and in vivo studies indicate that CM-CONs effectively regulate glucose homeostasis in diabetic model mice upon NIR light irradiation. This work develops a two-pronged attack strategy for accurately controlling blood glucose homeostasis, holding great prospects in the treatment for diabetes.
Collapse
Affiliation(s)
- Ning Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chen Li
- School of Public Health, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chaoqun Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Yue Shu
- School of Public Health, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xiongwei Qu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Baiqi Wang
- School of Public Health, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
17
|
Kim H, Kumar A, Lövkvist C, Palma AM, Martin P, Kim J, Bhoopathi P, Trevino J, Fisher P, Madan E, Gogna R, Won KJ. CellNeighborEX: deciphering neighbor-dependent gene expression from spatial transcriptomics data. Mol Syst Biol 2023; 19:e11670. [PMID: 37815040 PMCID: PMC10632736 DOI: 10.15252/msb.202311670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
Cells have evolved their communication methods to sense their microenvironments and send biological signals. In addition to communication using ligands and receptors, cells use diverse channels including gap junctions to communicate with their immediate neighbors. Current approaches, however, cannot effectively capture the influence of various microenvironments. Here, we propose a novel approach to investigate cell neighbor-dependent gene expression (CellNeighborEX) in spatial transcriptomics (ST) data. To categorize cells based on their microenvironment, CellNeighborEX uses direct cell location or the mixture of transcriptome from multiple cells depending on ST technologies. For each cell type, CellNeighborEX identifies diverse gene sets associated with partnering cell types, providing further insight. We found that cells express different genes depending on their neighboring cell types in various tissues including mouse embryos, brain, and liver cancer. Those genes are associated with critical biological processes such as development or metastases. We further validated that gene expression is induced by neighboring partners via spatial visualization. The neighbor-dependent gene expression suggests new potential genes involved in cell-cell interactions beyond what ligand-receptor co-expression can discover.
Collapse
Affiliation(s)
- Hyobin Kim
- Department of Computational BiomedicineCedars‐Sinai Medical CenterHollywoodCAUSA
- Biotech Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| | - Amit Kumar
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
- School of Medicine, Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Department of Human and Molecular Genetics, School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Cecilia Lövkvist
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEWUniversity of CopenhagenCopenhagenDenmark
| | - António M Palma
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
- School of Medicine, Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Instituto Superior TecnicoUniversidade de LisboaLisboaPortugal
| | - Patrick Martin
- Department of Computational BiomedicineCedars‐Sinai Medical CenterHollywoodCAUSA
- Biotech Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| | - Junil Kim
- School of Systems Biomedical ScienceSoongsil UniversitySeoulKorea
| | - Praveen Bhoopathi
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
- School of Medicine, Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Department of Human and Molecular Genetics, School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Jose Trevino
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
- Department of Surgery, School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Paul Fisher
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
- School of Medicine, Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Department of Human and Molecular Genetics, School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Esha Madan
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
- School of Medicine, Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Department of Human and Molecular Genetics, School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Department of Surgery, School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Rajan Gogna
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
- School of Medicine, Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Department of Human and Molecular Genetics, School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
- Department of Surgery, School of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Kyoung Jae Won
- Department of Computational BiomedicineCedars‐Sinai Medical CenterHollywoodCAUSA
- Biotech Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Larouche JA, Wallace EC, Spence BD, Buras E, Aguilar CA. Spatiotemporal mapping of immune and stem cell dysregulation after volumetric muscle loss. JCI Insight 2023; 8:e162835. [PMID: 36821376 PMCID: PMC10132146 DOI: 10.1172/jci.insight.162835] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Volumetric muscle loss (VML) is an acute trauma that results in persistent inflammation, supplantation of muscle tissue with fibrotic scarring, and decreased muscle function. The cell types, nature of cellular communication, and tissue locations that drive the aberrant VML response have remained elusive. Herein, we used spatial transcriptomics on a mouse model of VML and observed that VML engenders a unique spatial profibrotic pattern driven by crosstalk between fibrotic and inflammatory macrophages and mesenchymal-derived cells. The dysregulated response impinged on muscle stem cell-mediated repair, and targeting this circuit resulted in increased regeneration and reductions in inflammation and fibrosis. Collectively, these results enhance our understanding of the cellular crosstalk that drives aberrant regeneration and provides further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
| | | | | | - Eric Buras
- Biointerfaces Institute
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Carlos A. Aguilar
- Department of Biomedical Engineering
- Biointerfaces Institute
- Program in Cellular and Molecular Biology, University of Michigan (UM), Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Yang BA, da Rocha AM, Newton I, Shcherbina A, Wong SW, Fraczek PM, Larouche JA, Hiraki HL, Baker BM, Shin JW, Takayama S, Thouless MD, Aguilar CA. Manipulation of the nucleoscaffold potentiates cellular reprogramming kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532246. [PMID: 36993714 PMCID: PMC10055010 DOI: 10.1101/2023.03.12.532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Isabel Newton
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Shcherbina
- Dept. of Biomedical Informatics, Stanford University, Palo Alto, CA 94305, USA
| | - Sing-Wan Wong
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula M. Fraczek
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A. Larouche
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harrison L. Hiraki
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae-Won Shin
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuichi Takayama
- Wallace Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - M. D. Thouless
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
van Solinge TS, Mahjoum S, Ughetto S, Sammarco A, Broekman ML, Breakefield XO, O’Brien KP. Illuminating cellular and extracellular vesicle-mediated communication via a split-Nanoluc reporter in vitro and in vivo. CELL REPORTS METHODS 2023; 3:100412. [PMID: 36936071 PMCID: PMC10014296 DOI: 10.1016/j.crmeth.2023.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Tools to effectively demonstrate and quantify functional delivery in cellular communication have been lacking. This study reports the use of a fluorescently labeled split Nanoluc reporter system to demonstrate and quantify functional transfer between cells in vitro and in a subcutaneous tumor mouse model. Our construct allows monitoring of direct, indirect, and specifically extracellular vesicle-mediated functional communication.
Collapse
Affiliation(s)
- Thomas S. van Solinge
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Alessandro Sammarco
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Marike L.D. Broekman
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Killian P. O’Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Wu X, Guo H, Zhao J, Wei Y, Li YX, Pang HB. Identification of an ALK-2 inhibitor as an agonist for intercellular exchange and tumor delivery of nanomaterial. ADVANCED THERAPEUTICS 2023; 6:2200173. [PMID: 36818419 PMCID: PMC9937035 DOI: 10.1002/adtp.202200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/08/2022]
Abstract
Inefficient extravasation and penetration in solid tissues hinder the clinical outcome of nanoparticles (NPs). Recent studies have shown that the extravasation and penetration of NPs in solid tumor was mostly achieved via an active transcellular route. For this transport process, numerous efforts have been devoted to elucidate the endocytosis and subcellular trafficking of NPs. However, how they exit from one cell and re-enter into neighboring ones (termed intercellular exchange) remains poorly understood. We previously developed cellular assays that exclusively quantify the intercellular exchange of NPs in vitro. Our study showed that a significant portion of NPs are transferred inside extracellular vesicles (EVs). Pharmacological inhibition of EV biogenesis significantly reduced the tumor accumulation and vascular penetration of both inorganic and organic NPs in vivo. Intrigued by this result, we performed here a manual chemical screen with our assay, which identified that LDN-214117 (an inhibitor for activin receptor-like kinase-2, ALK-2) is an agonist of NP intercellular exchange. We further showed that LDN-214117 regulates the intercellular exchange by increasing the EV biogenesis. Mechanistic investigation showed that LDN-214117 functions via BMP (bone morphogenetic protein)-MAPK (mitogen-activated protein kinase) signaling pathway to increase EV biogenesis. We further demonstrated that LDN-214117 treatment in vivo enhanced the tumor accumulation and vascular penetration of a variety of NPs in multiple tumor models, which improves their antitumor efficacy. Overall, we showcase here the identification of a novel chemical compound with our intercellular exchange assays to modulate EV biogenesis and EV-mediated transport, thus boosting up the delivery and therapeutic efficacy of nanomaterial.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Hong Guo
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jiaqi Zhao
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Yushuang Wei
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Yue-Xuan Li
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Hong-Bo Pang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Sharma A, Singh AP, Singh S. Shaping Up the Tumor Microenvironment: Extracellular Vesicles as Important Intermediaries in Building a Tumor-Supportive Cellular Network. Cancers (Basel) 2023; 15:cancers15020501. [PMID: 36672450 PMCID: PMC9856954 DOI: 10.3390/cancers15020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
A tumor is not just comprised of cancer cells but also a heterogeneous group of infiltrating and resident host cells, as well as their secreted factors that form the extracellular matrix [...].
Collapse
Affiliation(s)
- Amod Sharma
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
| | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (A.P.S.); seem (S.S.); Tel.: +1-251-445-9843 (A.P.S.); +1-251-445-9844 (S.S.)
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (A.P.S.); seem (S.S.); Tel.: +1-251-445-9843 (A.P.S.); +1-251-445-9844 (S.S.)
| |
Collapse
|
23
|
Zhang M, Lin Y, Chen R, Yu H, Li Y, Chen M, Dou C, Yin P, Zhang L, Tang P. Ghost messages: cell death signals spread. Cell Commun Signal 2023; 21:6. [PMID: 36624476 PMCID: PMC9830882 DOI: 10.1186/s12964-022-01004-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Cell death is a mystery in various forms. Whichever type of cell death, this is always accompanied by active or passive molecules release. The recent years marked the renaissance of the study of these molecules showing they can signal to and communicate with recipient cells and regulate physio- or pathological events. This review summarizes the defined forms of messages cells could spread while dying, the effects of these signals on the target tissue/cells, and how these types of communications regulate physio- or pathological processes. By doing so, this review hopes to identify major unresolved questions in the field, formulate new hypothesis worthy of further investigation, and when possible, provide references for the search of novel diagnostic/therapeutics agents. Video abstract.
Collapse
Affiliation(s)
- Mingming Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yuan Lin
- grid.412463.60000 0004 1762 6325Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Ruijing Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Haikuan Yu
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yi Li
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ming Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ce Dou
- grid.410570.70000 0004 1760 6682Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Pengbin Yin
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Licheng Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Peifu Tang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| |
Collapse
|
24
|
Extracellular Vesicles and Cellular Ageing. Subcell Biochem 2023; 102:271-311. [PMID: 36600137 DOI: 10.1007/978-3-031-21410-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.
Collapse
|
25
|
Trideva Sastri K, Vishal Gupta N, Kannan A, Balamuralidhara V, Ramkishan A. Potential nanocarrier-mediated miRNA-based therapy approaches for multiple sclerosis. Drug Discov Today 2022; 27:103357. [PMID: 36115632 DOI: 10.1016/j.drudis.2022.103357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disorder attributed to neurodegeneration and demyelination, resulting in neurological impairment. miRNA has a significant role in biological processes in MS. In this review, we focus on the feasibility of delivering miRNAs through nanoformulations for managing MS. We provide a brief discussion of miRNA synthesis and evidence for miRNA dysregulation in MS. We also highlight formulation strategies and resulting technologies for the effective delivery of miRNAs through nanocarrier systems for achieving high therapeutic benefits.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - V Balamuralidhara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| |
Collapse
|
26
|
Zhao H, Chen T, Wu T, Xie L, Ma Y, Sha J. Strategy based on multiplexed brush architectures for regulating the spatiotemporal immobilization of biomolecules. BIOMATERIALS ADVANCES 2022; 141:213092. [PMID: 36191539 DOI: 10.1016/j.bioadv.2022.213092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Functional surfaces that enable both spatial and temporal control of biomolecules immobilization have attracted enormous attention for various fields including smart biointerface materials, high-throughput bioarrays, and fundamental research in the biosciences. Here, a flexible and promising method was presented for regulating the spatiotemporal arrangement of multiple biomolecules by constructing the topographically and chemically diverse polymer brushes patterned surfaces. A series of polymer brushes patterned surfaces, including antifouling brushes patterned surface, epoxy-presenting brushes patterned surface without and with antifouling background layer, were fabricated to control the spatial distribution of protein and cell adhesion through specific and nonspecific means. The fluorescence measurements demonstrated the effectiveness of spatially regulating the density of surface-immobilized protein through controlling the areal thickness of the poly (glycidyl methacrylate) (PGMA) brush patterns, leading to various complex patterns featuring well-defined biomolecule concentration gradients. Furthermore, a multiplexed surface bearing epoxy groups and azido groups with various areal densities was fabricated for regulating the spatiotemporal arrangement of different proteins, enabling binary biomolecules patterns with higher degrees of functionality and complexity. The presented strategy for the spatiotemporal control of biomolecules immobilization would boost the development of dynamic and multifunctional biosystems.
Collapse
Affiliation(s)
- Haili Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tao Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tong Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsheng Xie
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulu Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
27
|
Malaguti M, Portero Migueles R, Annoh J, Sadurska D, Blin G, Lowell S. SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo. Development 2022; 149:275525. [PMID: 35616331 PMCID: PMC9270970 DOI: 10.1242/dev.200226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered ‘sender’ and ‘receiver’ cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions. Summary: Optimised Synthetic Notch circuitry in mouse pluripotent stem cells provides a modular tool with which to monitor cell-cell interactions and program synthetic patterning of cell fates in culture and in embryos.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennifer Annoh
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daina Sadurska
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
28
|
Correa S, Grosskopf AK, Klich JH, Hernandez HL, Appel EA. Injectable Liposome-based Supramolecular Hydrogels for the Programmable Release of Multiple Protein Drugs. MATTER 2022; 5:1816-1838. [PMID: 35800848 PMCID: PMC9255852 DOI: 10.1016/j.matt.2022.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Directing biological functions is at the heart of next-generation biomedical initiatives in tissue and immuno-engineering. However, the ambitious goal of engineering complex biological networks requires the ability to precisely perturb specific signaling pathways at distinct times and places. Using lipid nanotechnology and the principles of supramolecular self-assembly, we developed an injectable liposomal nanocomposite hydrogel platform to precisely control the release of multiple protein drugs. By integrating modular lipid nanotechnology into a hydrogel, we introduced multiple mechanisms of release based on liposome surface chemistry. To validate the utility of this system for multi-protein delivery, we demonstrated synchronized, sustained, and localized release of IgG antibody and IL-12 cytokine in vivo, despite the significant size differences between these two proteins. Overall, liposomal hydrogels are a highly modular platform technology with the ability the mediate orthogonal modes of protein release and the potential to precisely coordinate biological cues both in vitro and in vivo.
Collapse
Affiliation(s)
- Santiago Correa
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Abigail K. Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - John H. Klich
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Hector Lopez Hernandez
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eric A. Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics – Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
29
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
30
|
Lima TSM, Souza W, Geaquinto LRO, Sanches PL, Stepień EL, Meneses J, Fernández-de Gortari E, Meisner-Kober N, Himly M, Granjeiro JM, Ribeiro AR. Nanomaterial Exposure, Extracellular Vesicle Biogenesis and Adverse Cellular Outcomes: A Scoping Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1231. [PMID: 35407349 PMCID: PMC9000848 DOI: 10.3390/nano12071231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
The progressively increasing use of nanomaterials (NMs) has awakened issues related to nanosafety and its potential toxic effects on human health. Emerging studies suggest that NMs alter cell communication by reshaping and altering the secretion of extracellular vesicles (EVs), leading to dysfunction in recipient cells. However, there is limited understanding of how the physicochemical characteristics of NMs alter the EV content and their consequent physiological functions. Therefore, this review explored the relevance of EVs in the nanotoxicology field. The current state of the art on how EVs are modulated by NM exposure and the possible regulation and modulation of signaling pathways and physiological responses were assessed in detail. This review followed the manual for reviewers produced by The Joanna Brigs Institute for Scoping Reviews and the PRISMA extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. The research question, "Do NMs modulate cellular responses mediated by EVs?" was analyzed following the PECO model (P (Population) = EVs, E (Exposure) = NMs, C (Comparator) = EVs without exposure to NMs, O (Outcome) = Cellular responses/change in EVs) to help methodologically assess the association between exposure and outcome. For each theme in the PECO acronym, keywords were defined, organized, and researched in PubMed, Science Direct, Scopus, Web of Science, EMBASE, and Cochrane databases, up to 30 September 2021. In vitro, in vivo, ex vivo, and clinical studies that analyzed the effect of NMs on EV biogenesis, cargo, and cellular responses were included in the analysis. The methodological quality assessment was conducted using the ToxRTool, ARRIVE guideline, Newcastle Ottawa and the EV-TRACK platform. The search in the referred databases identified 2944 articles. After applying the eligibility criteria and two-step screening, 18 articles were included in the final review. We observed that depending on the concentration and physicochemical characteristics, specific NMs promote a significant increase in EV secretion as well as changes in their cargo, especially regarding the expression of proteins and miRNAs, which, in turn, were involved in biological processes that included cell communication, angiogenesis, and activation of the immune response, etc. Although further studies are necessary, this work suggests that molecular investigations on EVs induced by NM exposure may become a potential tool for toxicological studies since they are widely accessible biomarkers that may form a bridge between NM exposure and the cellular response and pathological outcome.
Collapse
Affiliation(s)
- Thais S. M. Lima
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Wanderson Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Luths R. O. Geaquinto
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Priscila L. Sanches
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
| | - Ewa. L. Stepień
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland;
| | - João Meneses
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Eli Fernández-de Gortari
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Nicole Meisner-Kober
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - Martin Himly
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - José M. Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
- Dental School, Fluminense Federal University, Niterói 24020-140, Brazil
| | - Ana R. Ribeiro
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| |
Collapse
|
31
|
Gomes MC, Costa DCS, Oliveira CS, Mano JF. Design of Protein-Based Liquefied Cell-Laden Capsules with Bioinspired Adhesion for Tissue Engineering. Adv Healthc Mater 2021; 10:e2100782. [PMID: 34216107 DOI: 10.1002/adhm.202100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Indexed: 12/23/2022]
Abstract
Platforms with liquid cores are extensively explored as cell delivery vehicles for cell-based therapies and tissue engineering. However, the recurrence of synthetic materials can impair its translation into the clinic. Inspired by the adhesive proteins secreted by mussels, liquefied capsule is developed using gelatin modified with hydroxypyridinones (Gel-HOPO), a catechol analogue with oxidant-resistant properties. The protein-based liquefied macrocapsule permitted the compartmentalization of living cells by an approachable and non-time-consuming methodology resorting to i) superhydrophobic surfaces as a processing platform of hydrogel beads, ii) gelation of gelatin at temperatures < 25 °C, iii) iron coordination of the hydroxypyridinone (HOPO) moieties at physiological pH, and iv) core liquefaction at 37 °C. With the design of a proteolytically degradable shell, the possibility of encapsulating human adipose-derived mesenchymal stem cells (hASC) with and without the presence of polycaprolactone microparticles (μPCL) is evaluated. Showing prevalence toward adhesion to the inner shell wall, hASC formed a monolayer evidencing the biocompatibility and adequate mechanical properties of these platforms for proliferation, diminishing the need for μPCL as a supporting substrate. This new protein-based liquefied platform can provide biofactories devices of both fundamental and practical importance for tissue engineering and regenerative medicine or in other biotechnology fields.
Collapse
Affiliation(s)
- Maria C. Gomes
- Department of Chemistry CICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Dora C. S. Costa
- Department of Chemistry CICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Cláudia S. Oliveira
- Department of Chemistry CICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- Department of Chemistry CICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
32
|
Yang BA, Castor-Macias J, Fraczek P, Cornett A, Brown LA, Kim M, Brooks SV, Lombaert IMA, Lee JH, Aguilar CA. Sestrins regulate muscle stem cell metabolic homeostasis. Stem Cell Reports 2021; 16:2078-2088. [PMID: 34388363 PMCID: PMC8452514 DOI: 10.1016/j.stemcr.2021.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023] Open
Abstract
The health and homeostasis of skeletal muscle are preserved by a population of tissue-resident muscle stem cells (MuSCs) that maintain a state of mitotic and metabolic quiescence in adult tissues. The capacity of MuSCs to preserve the quiescent state declines with aging and metabolic insults, promoting premature activation and stem cell exhaustion. Sestrins are a class of stress-inducible proteins that act as antioxidants and inhibit the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Despite these pivotal roles, the role of Sestrins has not been explored in adult stem cells. We show that SESTRIN1,2 loss results in hyperactivation of the mTORC1 complex, increased propensity to enter the cell cycle, and shifts in metabolic flux. Aged SESTRIN1,2 knockout mice exhibited loss of MuSCs and a reduced ability to regenerate injured muscle. These findings demonstrate that Sestrins help maintain metabolic pathways in MuSCs that protect quiescence against aging.
Collapse
Affiliation(s)
- Benjamin A Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paula Fraczek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashley Cornett
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan V Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabelle M A Lombaert
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Cao D, Ge JY, Wang Y, Oda T, Zheng YW. Hepatitis B virus infection modeling using multi-cellular organoids derived from human induced pluripotent stem cells. World J Gastroenterol 2021; 27:4784-4801. [PMID: 34447226 PMCID: PMC8371505 DOI: 10.3748/wjg.v27.i29.4784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a global health concern despite the availability of vaccines. To date, the development of effective treatments has been severely hampered by the lack of reliable, reproducible, and scalable in vitro modeling systems that precisely recapitulate the virus life cycle and represent virus-host interactions. With the progressive understanding of liver organogenesis mechanisms, the development of human induced pluripotent stem cell (iPSC)-derived hepatic sources and stromal cellular compositions provides novel strategies for personalized modeling and treatment of liver disease. Further, advancements in three-dimensional culture of self-organized liver-like organoids considerably promote in vitro modeling of intact human liver tissue, in terms of both hepatic function and other physiological characteristics. Combined with our experiences in the investigation of HBV infections using liver organoids, we have summarized the advances in modeling reported thus far and discussed the limitations and ongoing challenges in the application of liver organoids, particularly those with multi-cellular components derived from human iPSCs. This review provides general guidelines for establishing clinical-grade iPSC-derived multi-cellular organoids in modeling personalized hepatitis virus infection and other liver diseases, as well as drug testing and transplantation therapy.
Collapse
Affiliation(s)
- Di Cao
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Heath Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Yun Wang
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Heath Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- School of Medicine, Yokohama City University, Yokohama 234-0006, Kanagawa, Japan
| |
Collapse
|
34
|
Kusamori K. Development of Advanced Cell-Based Therapy by Regulating Cell-Cell Interactions. Biol Pharm Bull 2021; 44:1029-1036. [PMID: 34334488 DOI: 10.1248/bpb.b21-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-based therapy for disease treatment involves the transplantation of cells obtained either from self or others into relevant patients. While cells constituting the body tissues maintain homeostasis by performing remarkable functions through complicated cell-cell interactions, transplanted cells, which are generally cultured as a monolayer, are unable to recapitulate similar interactions in vivo. The regulation of cell-cell interactions can immensely increase the function and therapeutic effect of transplanted cells. This review aims to summarize the methods of regulating cell-cell interactions that could significantly increase the therapeutic effects of transplanted cells. The first method involves the generation of multicellular spheroids by three-dimensional cell culture. Spheroid formation greatly improved the survival and therapeutic effects of insulin-secreting cells in diabetic mice after transplantation. Moreover, mixed multicellular spheroids, composed of insulin-secreting cells and aorta endothelial cells or fibroblasts, were found to significantly improve insulin secretion. Secondly, adhesamine derivatives, which are low-molecular-weight compounds that accelerate cell adhesion and avoid anoikis and anchorage-dependent apoptosis, have been used to improve the survival of bone marrow-derived cells and significantly enhanced the therapeutic effects in a diabetic mouse model of delayed wound healing. Finally, the avidin-biotin complex method, a cell surface modification method, has been applied to endow tumor-homing mesenchymal stem cells with anti-tumor ability by modifying them with doxorubicin-encapsulated liposomes. The modified cells showed excellent effectiveness in cell-based cancer-targeting therapy. The discussed methods can be useful tools for advanced cell-based therapy, promising future clinical applications.
Collapse
Affiliation(s)
- Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
35
|
Larouche JA, Mohiuddin M, Choi JJ, Ulintz PJ, Fraczek P, Sabin K, Pitchiaya S, Kurpiers SJ, Castor-Macias J, Liu W, Hastings RL, Brown LA, Markworth JF, De Silva K, Levi B, Merajver SD, Valdez G, Chakkalakal JV, Jang YC, Brooks SV, Aguilar CA. Murine muscle stem cell response to perturbations of the neuromuscular junction are attenuated with aging. eLife 2021; 10:e66749. [PMID: 34323217 PMCID: PMC8360658 DOI: 10.7554/elife.66749] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.
Collapse
Affiliation(s)
- Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Mahir Mohiuddin
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeongmoon J Choi
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Ulintz
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Paula Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | | | - Sarah J Kurpiers
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Wenxuan Liu
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Robert Louis Hastings
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - James F Markworth
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Kanishka De Silva
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin Levi
- Department of Surgery, University of Texas SouthwesternDallasUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| | - Sofia D Merajver
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Gregorio Valdez
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Young C Jang
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
36
|
Noiri M, Goto Y, Sato Y, Nakamura N, Ishihara K, Teramura Y. Exogenous Cell Surface Modification with Cell Penetrating Peptide-Conjugated Lipids Causes Spontaneous Cell Adhesion. ACS APPLIED BIO MATERIALS 2021; 4:4598-4606. [DOI: 10.1021/acsabm.1c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Makoto Noiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuya Goto
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Yuya Sato
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, Uppsala SE-751 85, Sweden
| |
Collapse
|