1
|
Liu Y, Cui F, Xu A, Wang B, Ma Y, Zhang Q, Sun Q, Zheng Y, Xue Y, Sun Y, Bian L. Interaction Between the PERK/ATF4 Branch of the Endoplasmic Reticulum Stress and Mitochondrial One-Carbon Metabolism Regulates Neuronal Survival After Intracerebral Hemorrhage. Int J Biol Sci 2024; 20:4277-4296. [PMID: 39247810 PMCID: PMC11379068 DOI: 10.7150/ijbs.93787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/21/2024] [Indexed: 09/10/2024] Open
Abstract
Recent investigations have revealed that oxidative stress can lead to neuronal damage and disrupt mitochondrial and endoplasmic reticulum functions after intracerebral hemorrhage (ICH). However, there is limited evidence elucidating their role in maintaining neuronal homeostasis. Metabolomics analysis, RNA sequencing, and CUT&Tag-seq were performed to investigate the mechanism underlying the interaction between the PERK/ATF4 branch of the endoplasmic reticulum stress (ERS) and mitochondrial one-carbon (1C) metabolism during neuronal resistance to oxidative stress. The association between mitochondrial 1C metabolism and the PERK/ATF4 branch of the ERS after ICH was investigated using transcription factor motif analysis and co-immunoprecipitation. The findings revealed interactions between the GRP78/PERK/ATF4 and mitochondrial 1C metabolism, which are important in preserving neuronal homeostasis after ICH. ATF4 is an upstream transcription factor that directly regulates the expression of 1C metabolism genes. Additionally, the GRP78/PERK/ATF4 forms a negative regulatory loop with MTHFD2 because of the interaction between GRP78 and MTHFD2. This study presents evidence of disrupted 1C metabolism and the occurrence of ERS in neurons post-ICH. Supplementing exogenous NADPH or interfering with the PERK/ATF4 could reduce symptoms related to neuronal injuries, suggesting new therapeutic prospects for ICH.
Collapse
Affiliation(s)
- Yikui Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengzhen Cui
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Aoqian Xu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Ma
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixiang Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Xue
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Kavinda MD, Choi YH, Kang CH, Lee MH, Kim GY. 2,4'-Dihydroxybenzophenone: A Promising Anti-Inflammatory Agent Targeting Toll-like Receptor 4/Myeloid Differentiation Factor 2-Mediated Mitochondrial Reactive Oxygen Species Production during Lipopolysaccharide-Induced Systemic Inflammation. ACS Pharmacol Transl Sci 2024; 7:1320-1334. [PMID: 38751626 PMCID: PMC11092117 DOI: 10.1021/acsptsci.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
The biochemical properties of 2,4'-dihydroxybenzophenone (DHP) have not been extensively studied. Therefore, this study aimed to investigate whether DHP could alleviate inflammatory responses induced by lipopolysaccharide (LPS) and endotoxemia. The results indicated that DHP effectively reduced mortality and morphological abnormalities, restored heart rate, and mitigated macrophage and neutrophil recruitment to inflammatory sites in LPS-microinjected zebrafish larvae. Additionally, the expression of pro-inflammatory mediators, including inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and interleukin-12 (IL-12), was significantly reduced in the presence of DHP. In RAW 264.7 macrophages, DHP inhibited the LPS-induced inflammatory response by downregulating pro-inflammatory mediators and decreasing the expression of myeloid differentiation primary response 88 (MyD88), phosphorylation of IL-1 receptor-associated protein kinase-4 (p-IRAK4), and nuclear factor-κB (NF-κB). Molecular docking analysis demonstrated that DHP occupies the hydrophobic pocket of myeloid differentiation factor 2 (MD2) and blocks the dimerization of Toll-like receptor 4 (TLR4). A molecular dynamics simulation confirmed that DHP stably bound to the hydrophobic pocket of MD2. Furthermore, the DHP treatment inhibited mitochondrial reactive oxygen species (mtROS) production during the LPS-induced inflammatory response in both RAW 264.7 macrophages and zebrafish larvae, which was accompanied by stabilizing mitochondrial membrane potential. In conclusion, our study highlights the therapeutic potential of DHP in alleviating LPS-induced inflammation and endotoxemia. The findings suggest that DHP exerts its anti-inflammatory effects by inhibiting the TLR4/MD2 signaling pathway and reducing the level of mtROS production. These results contribute to a better understanding of the biochemical properties of DHP and support its further exploration as a potential therapeutic agent for inflammatory conditions and endotoxemia.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department
of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic
of Korea
| | - Chang-Hee Kang
- Nakdonggang
National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Mi-Hwa Lee
- Nakdonggang
National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Gi-Young Kim
- Department
of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Chen Q, Deng Q, Liao Q, Liu Y, Zhang Z, Wu D, Lv Y, Qin J, Liu Q, Li S, Long Z, Xing X, Wang Q, Zeng X, Dong G, Hou M, Xiao Y. 8-OHdG mediates the association of co-exposure to fifty-five typical endocrine-disrupting chemicals with renal function: a cross-section investigation in Southern Chinese adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30779-30792. [PMID: 38613763 DOI: 10.1007/s11356-024-33266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Individual typical endocrine-disrupting chemicals (EDCs), including organophosphate triesters (OPEs), parabens, triclosan (TCS), bisphenols, benzophenones (BPs), phthalates (PAEs), and synthetic phenolic antioxidants (SPAs), are associated with renal dysfunction. However, the combined effects and underlying mechanisms of mixed EDC exposure on renal function remain unclear. Two hundred ninety-nine adult participants were enrolled in the cross-sectional survey conducted in Guangzhou, China. Urinary levels of 7 OPEs, 6 parabens, TCS, 14 bisphenols, 8 BPs, 15 PAEs, 4 SPAs, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were determined, and estimated glomerular filtration rate (eGFR) was served as the outcome index. We found elevated levels of diphenyl phosphate (DPP), bisphenol A (BPA), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono-butyl phthalate (MBP) showed dose-responsive associations with eGFR decline, However, nonlinear associations were observed for bis(2-butoxyethyl) hydrogen phosphate (BBOEP), TCS, 4-hydroxybenzophenone (HBP), mono-n-pentyl phthalate (MnPP), and mono-benzyl phthalate (MBzP). The quantile-based g-computation model demonstrated that a quartile increase in the EDC mixture corresponded to a 0.383-SD decrease (95% CI - 0.658 ~ - 0.108, P = 0.007) in eGFR. Notably, BPA was identified as the primary contributor to this effect. Moreover, 8-OHdG mediated the eGFR decline associated with EDC mixtures with a mediation proportion of 25.49%. A sex-modified effect was also observed (P = 0.004), indicating that exposure to the mixture of EDC was linked to more pronounced renal dysfunction in females. Our novel findings suggest that exposure to a typical mixture of EDCs is associated with renal dysfunction in the general adult population of Southern China. Furthermore, 8-OHdG may play a role in the pathogenesis of EDC mixture-related renal dysfunction.
Collapse
Affiliation(s)
- Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qifei Deng
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, People's Republic of China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zhaorui Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China
| | - Dehua Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qing Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Xiaowen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Mengjun Hou
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, China.
- Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Zhang T, Zhao F, Zhang Y, Shi JH, Cui F, Ma W, Wang K, Xu C, Zeng Q, Zhong R, Li N, Liu Y, Jin Y, Sheng X. Targeting the IRE1α-XBP1s axis confers selective vulnerability in hepatocellular carcinoma with activated Wnt signaling. Oncogene 2024; 43:1233-1248. [PMID: 38418544 DOI: 10.1038/s41388-024-02988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Liver-specific Ern1 knockout impairs tumor progression in mouse models of hepatocellular carcinoma (HCC). However, the mechanistic role of IRE1α in human HCC remains unclear. In this study, we show that XBP1s, the major downstream effector of IRE1α, is required for HCC cell survival both in vitro and in vivo. Mechanistically, XBP1s transactivates LEF1, a key co-factor of β-catenin, by binding to its promoter. Moreover, XBP1s physically interacts with LEF1, forming a transcriptional complex that enhances classical Wnt signaling. Consistently, the activities of XBP1s and LEF1 are strongly correlated in human HCC and with disease prognosis. Notably, selective inhibition of XBP1 splicing using an IRE1α inhibitor significantly repressed the viability of tumor explants as well as the growth of tumor xenografts derived from patients with distinct Wnt/LEF1 activities. Finally, machine learning algorithms developed a powerful prognostic signature based on the activities of XBP1s/LEF1. In summary, our study uncovers a key mechanistic role for the IRE1α-XBP1s pathway in human HCC. Targeting this axis could provide a promising therapeutic strategy for HCC with hyperactivated Wnt/LEF1 signaling.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Faming Zhao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Fengzhen Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weixiang Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingping Zeng
- Fosun Orinove PharmaTech Inc., Suzhou Industrial Park, Suzhou, 215123, China
| | - Rong Zhong
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yong Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Ma J, Tan J, Zhang W, Bai M, Liu K. Prenatal inflammation exposure accelerates lung cancer tumorigenesis in offspring mouse: possible links to IRE1α/XBP1-mediated M2-like polarization of TAMs and PD-L1 up-expression. Cancer Immunol Immunother 2024; 73:88. [PMID: 38554175 PMCID: PMC10981640 DOI: 10.1007/s00262-024-03666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Prenatal inflammation exposure (PIE) can increase the disease susceptibility in offspring such as lung cancer. Our purpose was to investigate the mechanisms of PIE on lung cancer. METHODS Prenatal BALB/c mice were exposed to lipopolysaccharide (LPS), and then, their offspring were intraperitoneally instilled with urethane to establish the two-stage lung cancer carcinogenesis model. At the 48 weeks of age, the offspring mice were killed and lung tissues were collected for HE, immunohistochemistry, immunofluorescence, and Luminex MAGPIX®-based assays. CD11b + F4/80 + tumor-associated macrophages (TAMs) were sorted out from lung tumor tissues by cell sorting technique. Flow cytometry was employed to evaluate the extent of M2-like polarization of TAMs and PD-L1 expression. RESULTS The offspring of PIE mice revealed more lung lesion changes, including atypical hyperplasia and intrapulmonary metastases. The number of lung nodules, lung organ index, and PCNA, MMP-9 and Vimentin positive cells in lung tissue of PIE group were higher than those of Control group. The increases of mRNA encoding M2 macrophage markers and cytokines in offspring of prenatal LPS-treated mice confirmed the induced effect of PIE on macrophage polarization. Additionally, PIE treatment increased the percentage of CD163 + CD206 + cells in the sorted TAMs. Importantly, endoplasmic reticulum (ER) stress-markers like GRP78/BIP and CHOP, p-IRE1α and XBP1s, and PD-L1 were up-regulated in TAMs from PIE group. Besides, we also observed that IRE1α inhibitor (KIRA6) reversed the M2-like TAMs polarization and metastasis induced by PIE. CONCLUSIONS IRE1α/XBP1-mediated M2-like TAMs polarization releases the pro-tumorigenic cytokines and PD-L1 expression, which may be the regulatory mechanism of accelerating lung cancer in offspring of mice undergoing PIE.
Collapse
Affiliation(s)
- Jingbo Ma
- Department of Thoracic Surgery, Seventh Medical Center of Chinese, PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100010, China
| | - Jian Tan
- Department of Thoracic Surgery, Seventh Medical Center of Chinese, PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100010, China
| | - Weiqiang Zhang
- Department of Thoracic Surgery, Seventh Medical Center of Chinese, PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100010, China
| | - Miaochun Bai
- Department of Thoracic Surgery, Seventh Medical Center of Chinese, PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100010, China
| | - Keqiang Liu
- Department of Thoracic Surgery, Seventh Medical Center of Chinese, PLA General Hospital, No. 5, Nanmencang, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
6
|
Zhou H, Zhang T, Chen L, Cui F, Xu C, Peng J, Ma W, Huang J, Sheng X, Liu M, Zhao F. The functional implication of ATF6α in castration-resistant prostate cancer cells. FASEB J 2023; 37:e22758. [PMID: 36607288 DOI: 10.1096/fj.202201347r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Stress in the endoplasmic reticulum (ER) may perturb proteostasis and activates the unfolded protein response (UPR). UPR activation is frequently observed in cancer cells and is believed to fuel cancer progression. Here, we report that one of the three UPR sensors, ATF6α, was associated with prostate cancer (PCa) development, while both genetic and pharmacological inhibition of ATF6α impaired the survival of castration-resistance PCa (CRPC) cells. Transcriptomic analyses identified the molecular pathways deregulated upon ATF6α depletion, and also discovered considerable disparity in global gene expression between ATF6α knockdown and Ceapin-A7 treatment. In addition, combined analyses of human CRPC bulk RNA-seq and single-cell RNA-seq (scRNA-seq) public datasets confirmed that CRPC tumors with higher ATF6α activity displayed higher androgen receptor (AR) activity, proliferative and neuroendocrine (NE) like phenotypes, as well as immunosuppressive features. Lastly, we identified a 14-gene set as ATF6α NE gene signature with encouraging prognostic power. In conclusion, our results indicate that ATF6α is correlated with PCa progression and is functionally relevant to CRPC cell survival. Both specificity and efficacy of ATF6α inhibitors require further refinement and evaluation.
Collapse
Affiliation(s)
- Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Tingting Zhang
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengzhen Cui
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxiang Xu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Jiaxi Peng
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Weixiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jirong Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Sheng
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|