1
|
Shao H, Zhong L, Wu X, Wang YX, Smith SC, Tan X. Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion. Chem Commun (Camb) 2025; 61:2203-2216. [PMID: 39760522 DOI: 10.1039/d4cc05900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction. Then we summarize the recent progress of density functional theory studies on designing CS-SACs by the above strategies for electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, and electrosynthesis of urea, and electrochemical energy storage systems such as monovalent metal-sulfur batteries (Li-S and Na-S batteries). Finally, the current challenges and future opportunities in this emerging field are highlighted. This review will provide a helpful guideline for the rational design of the structure and functionality of CS-SACs, and contribute to material optimizations in applications of energy storage and conversion.
Collapse
Affiliation(s)
- Hengjia Shao
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Li Zhong
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Xingqiao Wu
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia.
| | - Xin Tan
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Yang Q, Wang C, Song L, Zhang Y, Shen Z, Cai W, Song Y. Integrated Design of Homogeneous/Heterogeneous Copper Complex Catalysts to Enable Synergistic Effects on Sulfur and Lithium Evolution Reactions. Angew Chem Int Ed Engl 2025; 64:e202415078. [PMID: 39350315 DOI: 10.1002/anie.202415078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 11/07/2024]
Abstract
Fatal polysulfide shuttling, sluggish sulfur redox kinetics and detrimental lithium dendrites have curtailed the real discharge capacity, working lifespan and safety of lithium-sulfur (Li-S) batteries. Organic small molecule promotors as one type of emerging active catalysts can fulfil the management of the electrochemical species evolution behaviors. Herein, an integrated engineering is organized by synthesizing dual chlorine-bridge enabled binuclear copper complex (Cu2(phen)2Cl2) and its derivative generated in electrolyte (Cu-ETL) as the heterogeneous and homogeneous catalyst, respectively. The well-designed Cu-ETL with a optimized concentration of 0.25 wt% as a homogeneous enabler offers highly utilized Cu centers and the sufficient interface contact for guiding the Li2S nucleation/decomposition reactions. The Cu2(phen)2Cl2 loaded on carbon spheres as an interlayer (Cu-INT) can break through the catalytic limitation resulting from the saturated concentration of Cu-ETL and thus offers an extended manipulation effect. Benefiting from the synergistic effect, the Li-S battery shows stable cycling at 3 C upon 500 cycles with a capacity degradation rate as low as 0.029 % per cycle. Of specific note, an actual cell energy density of 372.1 Wh kg-1 is harvested by a 1.2 Ah-level soft-packaged pouch cell, implying a chance for requiring the demand of high-energy batteries.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Chensheng Wang
- School of Mechatronic Engineering, Shanxi Datong University, Datong, 037003, China
| | - Lixian Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yunfeng Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhaoyang Shen
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenlong Cai
- Department of Adv. Energy Mater., College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Yingze Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
3
|
Liu J, He Q, Zou W, Wu M, Rego CRC, Xia C, Xiong Y, Zhao Y. Modulation of d-Orbital Interactions in Dual-Atom Catalysts for Enhanced Polysulfide Anchoring and Kinetics in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60180-60188. [PMID: 39436993 DOI: 10.1021/acsami.4c11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Modulating the electronic structure is essential for improving the anchoring and catalytic capabilities of catalysts in lithium-sulfur batteries (LSBs). This study delves into the modulation of d-orbitals in transition metal dual-atom catalysts (DACs) supported by boron nitride and graphene (BNC) hybrid sheets for LSBs. This study reveals that the d-band center of the DACs, a key determinant of material chemical properties, is primarily determined by the electronic configuration of the dyz and dx2-y2 orbitals. Furthermore, the interaction between dz2 of transition metals and S_3 p orbitals is critical for the binding strength of LiPSs. By understanding these interactions, the functionality of DACs can be customized for optimal performance in LSBs. For example, the MnCrBNC catalyst with 10 d-electrons exhibits the optimal d-band center and demonstrates exceptional LiPSs binding capability, the lowest Li2S decomposition energy barrier, and the lowest Gibbs free energy of reaction for the rate-determining step of sulfur reduction. This study elucidates the fundamental mechanisms for designing high-performance LSB catalysts through electronic structure modulation.
Collapse
Affiliation(s)
- Jianfeng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Qiu He
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Wanjuan Zou
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697, United States
| | - Mingwei Wu
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
| | - Celso Ricardo Caldeira Rego
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Chenxi Xia
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Xiong
- College of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yan Zhao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- College of Materials Synthesis and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Wu C, Zhu H, Jia S, Xia J, Xu W, Liu P, Zou W, Suo B, Meeladi G, Li Y. Theoretical Design and Study of a Single-Atom Catalyst in Lithium-Sulfur Batteries: Edge-Type FeN 4 Active Site Electron Density Redistribution Driven by Heteroatoms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53729-53739. [PMID: 39316025 DOI: 10.1021/acsami.4c09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Lithium-sulfur (Li-S) batteries are considered to be the most promising next-generation high energy density storage systems. However, they still face challenges, such as the shuttle effect of lithium polysulfides (LiPSs) and slow sulfur oxidation-reduction kinetics. In this work, heteroatom (P and S)-doped edge-type Fe single-atom catalytic materials (FeN4S2/P2-DG) for sulfur reduction reactions (SRRs) and sulfur oxidation reactions in Li-S batteries are investigated using density functional theory calculations. Theoretical analysis suggests that compared to planar Fe-N4 fragments, the charge density accumulation around edge-type Fe-N4 fragments in S- or P-doped structures is higher. Furthermore, the doping of P or S reduces the electron filling state of Fe_3d orbitals, leading to a decrease in electron occupancy in the antibonding orbitals, which is beneficial for the formation of d-p orbital hybridization, strengthening the anchoring strength of FeN4P2/S2-DG for S8/LiPSs. Specifically, FeN4P1,2-DG showed the lowest free energy barriers (0.57 eV) for SRRs and reduced the dissociation energy barrier of Li2S from 1.85 eV (for planar FeN4-G) to 0.96 eV during the charging process, demonstrating excellent catalytic ability. Additionally, this theoretical study provides further insights into the application of graphene-supported single-atom catalyst materials as anchoring materials for Li-S batteries.
Collapse
Affiliation(s)
- Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Shaobo Jia
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Jiezhen Xia
- Department of Physics, School of Science, Tibet University, 850000 Lhasa, China
| | - Wanlin Xu
- Department of Physics, School of Science, Tibet University, 850000 Lhasa, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Wenli Zou
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Ghulam Meeladi
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Yawei Li
- North China Electric Power University, Institute of Advanced Materials, 102206 Beijing, China
| |
Collapse
|
5
|
Yuan H, Yang J, Zhang YW. Coordination Engineering of Fe-Centered Catalysts for Superior Li-S Battery Performance. Chem Asian J 2024; 19:e202400199. [PMID: 38946437 DOI: 10.1002/asia.202400199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Iron-nitrogen functionalized graphene has emerged as a promising cathode host for rechargeable lithium-sulfur batteries (RLSBs) due to its affordability and enhanced battery performance. To optimize its catalytical efficiency, we propose a novel approach involving coordination engineering. Our investigation spans a plethora of catalysts with varied coordination environments, focusing on elements B, C, N and O. We revealed that Fe-C4 and Fe-B2C2-h are particularly effective for promoting Li2S oxidation, whereas Fe-N4 excels in catalyzing the sulfur reduction reaction (SRR). Importantly, our study identified specific descriptors - namely, the Integrated Crystal Orbital Hamilton Population (ICOHP) and the bond length between Fe and S in Li2S adsorbed state - as the most effective predictive descriptors for Li2S oxidation barriers. Meanwhile, Li2S adsorption energy emerges as a reliable descriptor for assessing the SRR barrier. These identified descriptors are expected to be instrumental in rapidly identifying promising cathode hosts across various metal-centered systems with diverse coordination environments. Our findings not only offer valuable insights into the role of coordination environment, but also present an effective path for rapidly identifying high performance catalysts for RLSBs, enabling the acceleration of advanced RLSBs development.
Collapse
Affiliation(s)
- Hao Yuan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Jing Yang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| |
Collapse
|
6
|
Zhou R, Ren Y, Li W, Guo M, Wang Y, Chang H, Zhao X, Hu W, Zhou G, Gu S. Rare Earth Single-Atom Catalysis for High-Performance Li-S Full Battery with Ultrahigh Capacity. Angew Chem Int Ed Engl 2024; 63:e202405417. [PMID: 38761059 DOI: 10.1002/anie.202405417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024]
Abstract
Lithium-sulfur (Li-S) batteries have many advantages but still face problems such as retarded polysulfides redox kinetics and Li dendrite growth. Most reported single atom catalysts (SACs) for Li-S batteries are based on d-band transition metals whose d orbital constitutes active valence band, which is inclined to occur catalyst passivation. SACs based on 4f inner valence orbital of rare earth metals are challenging for their great difficulty to be activated. In this work, we design and synthesize the first rare earth metal Sm SACs which has electron-rich 4f inner orbital to promote catalytic conversion of polysulfides and uniform deposition of Li. Sm SACs enhance the catalysis by the activated 4f orbital through an f-d-p orbital hybridization. Using Sm-N3C3 modified separators, the half cells deliver a high capacity over 600 mAh g-1 and a retention rate of 84.3 % after 2000 cycles. The fabricated Sm-N3C3-Li|Sm-N3C3@PP|S/CNTs full batteries can provide an ultra-stable cycling performance of a retention rate of 80.6 % at 0.2 C after 100 cycles, one of the best full Li-S batteries. This work provides a new perspective for the development of rare earth metal single atom catalysis in electrochemical reactions of Li-S batteries and other electrochemical systems for next-generation energy storage.
Collapse
Affiliation(s)
- Rong Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yongqiang Ren
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Weixin Li
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Meng Guo
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Haixin Chang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Zhao
- State Key Laboratory of Biobased Material and Green Parking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wei Hu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
7
|
Jakhar M, Barone V, Ding Y. Theoretical insights into single-atom catalysts for improved charging and discharging kinetics of Na-S and Na-Se batteries. NANOSCALE 2024; 16:12982-12991. [PMID: 38896041 DOI: 10.1039/d4nr01134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dissolution of poly-sulfide/selenides (p-S/Ses) intermediates into electrolytes, commonly known as the shuttle effect, has posed a significant challenge in the development of more efficient and reliable Na-S/Se batteries. Single-atom catalysts (SACs) play a crucial role in mitigating the shuttling of Na-pS/Ses and in promoting Na2S/Se redox processes at the cathode. In this work, single transition metal atoms Co, Fe, Ir, Ni, Pd, Pt, and Rh supported in nitrogen-deficient graphitic carbon nitride (rg-C3N4) are investigated to explore the charging and discharging kinetics of Na-S and Na-Se batteries using Density Functional Theory calculations. We find that SAs adsorbed on reduced g-C3N4 monolayers are substantially more effective in trapping higher-order Na2Xn than pristine g-C3N4 surfaces. Moreover, our ab initio molecular dynamics calculations indicate that the structure of X8 (X = S, Se) remains almost intact when adsorbed on Fe, Co, Ir, Ni, Pt, and Rh SACs, suggesting that there is no significant S or Se poisoning in these cases. Additionally, SACs reduce the free energies of the rate-determining step during discharge and present a lower decomposition barrier of Na2X during charging of Na-X electrode. The underlying mechanisms behind this fast kinetics are thoroughly examined using charge transfer, bonding strength, and d-band center analysis. Our work demonstrates an effective strategy for designing single-atom catalysts and offers solutions to the performance constraints caused by the shuttle effect in sodium-sulfur and sodium-selenium batteries.
Collapse
Affiliation(s)
- Mukesh Jakhar
- Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Veronica Barone
- Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Yi Ding
- U.S. Army DEVCOM-GVSC, Warren, MI 48397, USA
| |
Collapse
|
8
|
Xu W, Feng T, Xia J, Cao R, Wu Q. Single-atom catalysts based on C 2N for sulfur cathodes in Na-S batteries: a first-principles study. Phys Chem Chem Phys 2024; 26:15657-15665. [PMID: 38764420 DOI: 10.1039/d4cp00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Several major roadblocks, including the "shuttle effect" caused by the dissolved higher-order sodium polysulfides (NaPSs), extremely poor conductivity of sulfur cathodes, and sluggish conversion kinetics of charging-discharging reactions, have hindered the commercialization of sodium-sulfur batteries (NaSBs). In our study, representative C2N-based single-atom catalysts (SACs), TM@C2N (TM = Fe, Ni and V), are proposed to improve the comprehensive performance of NaSBs. Based on first-principles calculations, we first discuss in detail the anchoring behavior of all adsorption systems, TM@C2N/(S8 and NaPSs). The results indicate that compared to pristine C2N, TM@C2N substrates exhibit a stronger capability to capture S8/NaPSs clusters through physical/chemical binding, with V@C2N showing the most outstanding capability ranging from -2.37 to -5.03 eV. The density of states analysis reveals that metallic properties can be well maintained before and after adsorption of polysulfides. More importantly, TM@C2N configurations can greatly reduce the energy barriers of charging and discharging reactions, thereby accelerating the conversion efficiency of NaSBs. It is worth mentioning that V@C2N has lower charge-discharge energy barriers and Na ion migration rates, since the embedded TM atom weakens the strong binding of Na+ in the N6 cavity of C2N. The intrinsic mechanism analysis reveals that the interaction between the d orbitals of V and the p orbitals of S leads to the weakening of Na-S bonds, which can not only effectively inhibit the shuttle effect, but also promote the dissociation of Na2S. Overall, this work not only offers excellent catalytic materials, but also provides vital guidance for designing SACs in NaSBs.
Collapse
Affiliation(s)
- Wanlin Xu
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
| | - Tengrui Feng
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
| | - Jiezhen Xia
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
| | - Rong Cao
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
| | - Qi Wu
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
| |
Collapse
|
9
|
Yang Q, Cai J, Li G, Gao R, Han Z, Han J, Liu D, Song L, Shi Z, Wang D, Wang G, Zheng W, Zhou G, Song Y. Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium-sulfur reactions. Nat Commun 2024; 15:3231. [PMID: 38622167 PMCID: PMC11018799 DOI: 10.1038/s41467-024-47565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Engineering atom-scale sites are crucial to the mitigation of polysulfide shuttle, promotion of sulfur redox, and regulation of lithium deposition in lithium-sulfur batteries. Herein, a homonuclear copper dual-atom catalyst with a proximal distance of 3.5 Å is developed for lithium-sulfur batteries, wherein two adjacent copper atoms are linked by a pair of symmetrical chlorine bridge bonds. Benefiting from the proximal copper atoms and their unique coordination, the copper dual-atom catalyst with the increased active interface concentration synchronously guide the evolutions of sulfur and lithium species. Such a delicate design breaks through the activity limitation of mononuclear metal center and represents a catalyst concept for lithium-sulfur battery realm. Therefore, a remarkable areal capacity of 7.8 mA h cm-2 is achieved under the scenario of sulfur content of 60 wt.%, mass loading of 7.7 mg cm-2 and electrolyte dosage of 4.8 μL mg-1.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jinyan Cai
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guanwu Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen, Shenzhen, 518055, China
| | - Zhiyuan Han
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen, Shenzhen, 518055, China
| | - Jingjing Han
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Dong Liu
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Lixian Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zixiong Shi
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dong Wang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Gongming Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen, Shenzhen, 518055, China.
| | - Yingze Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
10
|
Nesterova V, Korostelev V, Klyukin K. Unveiling the Role of Termination Groups in Stabilizing MXenes in Contact with Water. J Phys Chem Lett 2024; 15:3698-3704. [PMID: 38546143 DOI: 10.1021/acs.jpclett.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
MXenes are versatile 2D materials demonstrating outstanding electrochemical and physical properties, but their practical use is limited, because of fast degradation in an aqueous environment. To prevent the degradation of MXenes, it is essential to understand the atomistic details of the reaction and to identify active sites. In this letter, we provided a computational analysis of the degradation processes at the interface between MXene basal planes and water using enhanced sampling ab initio molecular dynamics simulations and symbolic regression analysis. Our results indicate that the reactivity of Ti sites toward the water attack reaction depends on both local coordination and chemical composition of the MXene surfaces. Decreasing the work function of the Ti3C2Tx surfaces and avoiding Ti sites that are loosely anchored to the subsurface (e.g., O-coordinated) can improve surface stability. The developed computational framework can be further used to investigate other possible culprits of the degradation reaction, including the role of defects and edges.
Collapse
Affiliation(s)
- Valentina Nesterova
- Department of Mechanical and Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Vladislav Korostelev
- Department of Mechanical and Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Konstantin Klyukin
- Department of Mechanical and Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
11
|
Xia J, Cao R, Xu W, Wu Q. Regulating the coordination environment of single atom catalysts anchored on C 3N monolayer for Li-S battery by first-principles calculations. J Colloid Interface Sci 2024; 658:795-804. [PMID: 38154242 DOI: 10.1016/j.jcis.2023.12.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Owing to the extremely high theoretical specific capacity and energy density, the catalytic materials of lithium-sulfur (Li-S) batteries are widely explored. The "shuttle effect", poor electrode conductivity, and slow charge-discharge reaction dynamics are some of the key issues that have seriously hampered their commercialization process. Herein, based on the density-functional-theory (DFT), the catalytic performances of a series of single-atom catalysts (SACs) designed by regulating the N-content around coordination center in C3N (TM@N2C2/N3C/N4-C3N (TM = Ti, V, Fe, Co, Ni)), are systematically analyzed and evaluated. Among all the constructed SACs, Ti-centered configurations with fewer d electrons, especially for the Ti@N2C2-C3N, have the remarkable catalytic effect in improving the electron conductivity, trapping soluble polysulfides and accelerating the redox reaction. The in-depth mechanism indicates that the interaction between d orbital of Ti, mainly the splitting [Formula: see text] , and p orbital of S is the key factor for achieving high-effective adsorption. More importantly, the integral value of crystal orbital Hamiltonian population (ICOHP) of the Li-S bond in the adsorbed Li2S can serve as an excellent descriptor for evaluating the overall catalytic ability of substrates. Our work has vital guiding significance for designing high-performance SACs of Li-S batteries.
Collapse
Affiliation(s)
- Jiezhen Xia
- Department of Physics, School of Science, Tibet University, Lhasa 850000, China; Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
| | - Rong Cao
- Department of Physics, School of Science, Tibet University, Lhasa 850000, China; Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
| | - Wanlin Xu
- Department of Physics, School of Science, Tibet University, Lhasa 850000, China; Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
| | - Qi Wu
- Department of Physics, School of Science, Tibet University, Lhasa 850000, China; Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China; Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China.
| |
Collapse
|
12
|
Wang B, Cai F, Chu C, Fu B, Świerczek K, Li L, Zhao H. Modification of the Ni-Rich Layered Cathode Material by Hf Addition: Synergistic Microstructural Engineering and Surface Stabilization. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38437708 DOI: 10.1021/acsami.3c18865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The rapid decline of the reversible capacity originating from microcracks and surface structural degradation during cycling is still a serious obstacle to the practical utilization of Ni-rich LiNixCoyAl1-x-yO2 (x ≥ 0.8) cathode materials. In this research, a feasible Hf-doping method is proposed to improve the electrochemical performance of LiNi0.9Co0.08Al0.02O2 (NCA90) through microstructural optimization and structural enhancement. The addition of Hf refines the primary particles of NCA90 and develops them into a short rod shape, making them densely arranged along the radial direction, which increases the secondary particle toughness and reduces their internal porosity. Moreover, Hf-doping stabilizes the layered structure and suppresses the side reactions through the introduction of robust Hf-O bonding. Multiple advantages of Hf-doping allowed significant improvement of the cycling stability of LiNi0.895Co0.08Al0.02Hf0.005O2 (NCA90-Hf0.5), with a reversible capacity retention rate of 95.3% after 100 cycles at 1 C, as compared with only 82.0% for the pristine NCA90. The proposed synergetic strategy combining microstructural engineering and crystal structure enhancement can effectively resolve the inherent capacity fading of Ni-rich layered cathodes, promoting their practical application for next-generation lithium-ion batteries.
Collapse
Affiliation(s)
- Bo Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Feipeng Cai
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenxiao Chu
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Boyang Fu
- Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Konrad Świerczek
- Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Linsen Li
- Department of Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hailei Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Municipal Key Laboratory for Advanced Energy Materials and Technologies, Beijing 100083, China
| |
Collapse
|
13
|
Liang H, Zeng Z, Qiao Z, Li Y, Wang C. The heterointerface effect to boost the catalytic performance of single atom catalysts for sulfur conversion in lithium-sulfur batteries. Phys Chem Chem Phys 2024; 26:5858-5867. [PMID: 38305023 DOI: 10.1039/d3cp05883b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Lithium-sulfur (Li-S) batteries are considered as one of the promising next-generation energy storage devices due to their characteristics of high energy density and low cost. However, the shuttle effect and sluggish conversion of lithium polysulfide (LiPs) have hindered their commercial applications. To address these issues, in our previous works, we have screened several highly efficient single atom catalysts (SACs) (MN4@G, M = V, Mo and W) with atomically dispersed transition metal atoms supported by nitrogen doped graphene based on high throughput calculations. Nevertheless, they still suffer from low loading of metal centers and unsatisfactory capability for accelerating the reaction kinetics. To tackle such problems, based on first-principles calculations, we systematically investigated the heterointerface effect on the catalytic performance of such three MN4@G toward sulfur conversion upon forming heterostructures with 5 typical two-dimensional materials of TiS2, C3N4, BN, graphene and reduced graphene oxide. Guided by efficient descriptors proposed in our previous work, we screened VN4@G/TiS2, MoN4@G/TiS2 and WN4@G/TiS2 possessing low Li2S decomposition barriers of 0.54, 0.44 and 0.41 eV, respectively. They also possess enhanced capabilities for catalyzing the sulfur reduction reaction as well as stabilizing soluble LiPs. More interestingly, the heterointerface can enhance the capability of the carbon atoms far away from the metal centers for trapping LiPs. This work shows that introducing a heterointerface is a promising strategy to boost the performance of SACs in Li-S batteries.
Collapse
Affiliation(s)
- Haikuan Liang
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Zhihao Zeng
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Zhengping Qiao
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Yan Li
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Chengxin Wang
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
14
|
Wu S, Wang C, Liang H, Nong W, Zeng Z, Li Y, Wang C. High-Throughput Calculations for Screening d- and p-Block Single-Atom Catalysts toward Li 2 S/Na 2 S Decomposition Guided by Facile Descriptor beyond Brønsted-Evans-Polanyi Relationship. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305161. [PMID: 37641192 DOI: 10.1002/smll.202305161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Single-atom catalysts (SACs) are promising cathode materials for addressing issues faced by lithium-sulfur batteries. Considering the ample chemical space of SACs, high-throughput calculations are efficient strategies for their rational design. However, the high throughput calculations are impeded by the time-consuming determination of the decomposition barrier (Eb ) of Li2 S. In this study, the effects of bond formation and breakage on the kinetics of SAC-catalyzed Li2 S decomposition with g-C3 N4 as the substrate are clarified. Furthermore, a new efficient and easily-obtained descriptor Li─S─Li angle (ALi─S─Li ) of adsorbed Li2 S, different from the widely accepted thermodynamic data for predicting Eb , which breaks the well-known Brønsted-Evans-Polanyi relationship, is identified. Under the guidance of ALi─S─Li , several superior SACs with d- and p-block metal centers supported by g-C3 N4 are screened to accelerate the sulfur redox reaction and fix the soluble lithium polysulfides. The newly identified descriptor of ALi─S─Li can be extended to rationally design SACs for Na─S batteries. This study opens a new pathway for tuning the performance of SACs to catalyze the decomposition of X2 S (X = Li, Na, and K) and thus accelerate the design of SACs for alkaline-chalcogenide batteries.
Collapse
Affiliation(s)
- Siyi Wu
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Chenhui Wang
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Haikuan Liang
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Wei Nong
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Zhihao Zeng
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Yan Li
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Chengxin Wang
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| |
Collapse
|
15
|
Wang C, Huang F, Liang H, Nong W, Tian F, Li Y, Wang C. d- and p-Block single-atom catalysts supported by BN nanocages toward electrochemical reactions of N 2 and O 2. Phys Chem Chem Phys 2023; 25:25761-25771. [PMID: 37724050 DOI: 10.1039/d3cp03487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrocatalysis is involved in many energy storage and conversion devices, triggering research and development of electrocatalysts, particularly single-atom catalysts (SACs). The introduction of the strain effect to enhance the performance of SACs has drawn ever-increasing research attention, which can tailor the local atomic and electronic structure of active sites. Herein, via high throughput calculations, we have explored the effects of strain on the catalytic performance of SACs with MN4 configuration for electrochemical reactions of N2 and O2 by incorporating d- and p-block single metal atoms into BN nanocages (BNNCs). The calculations demonstrate that Os@BNNC exhibits the highest catalytic activity for the nitrogen reduction reaction (NRR) with a limiting potential of -0.29 V. Co@BNNC can serve as an excellent bifunctional SAC for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), with overpotentials of 0.32 and 0.37 V, respectively. In particular, Sn@BNNC with a p-block metal as the active center is a competitive SAC for the ORR with an overpotential of 0.64 V. More interestingly, the NRR and ORR performances of SACs supported by BNNCs have a close correlation with the structural and electronic properties of adsorbed N2 and O2 molecules, which proves that controlling the adsorption energy of N2 and O2 molecules is crucial to improving the catalytic activity of BNNC. The current investigation opens up an avenue for designing SACs embedded in nanocages possessing intrinsically curved surfaces for electrochemical reactions.
Collapse
Affiliation(s)
- Chenhui Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Fan Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Haikuan Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Wei Nong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Fei Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Yan Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
16
|
Wei C, Ge M, Fang T, Tang X, Liu X. Rational design of MXene-based single atom catalysts for Na-Se batteries from sabatier principle. Phys Chem Chem Phys 2023; 25:24948-24959. [PMID: 37694491 DOI: 10.1039/d3cp02150e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Na-Se batteries have attracted great attention because of their high-energy density and low cost, though the shuttle effect of polyselenides and sluggish reaction dynamics still limit their practical applications. Herein, MXenes were decorated with single zinc atom as selenium hosts, and the effect of interfacial electrochemical reaction was studied via first-principles simulation. The embedding of single zinc atom into MXenes was found to enhance the anchoring ability to inhibit the shuttle effect. However, Zn-MXenes as single atom catalysts had different effects on interfacial electrochemical reactions, which can be attributed to the increased interaction strengths between Zn-MXenes and polyselenides. For Ti-based MXenes, the enhanced interaction was found to be beneficial for the electrochemical reaction, whereas the overly strong anchoring strength of Zn-Cr2CO2 would inhibit charging-discharging kinetics. Therefore, the matching of MXenes and metal atoms should be considered to adjust the anchoring ability based on the Sabatier principle. This work provides new insights into the design of SACs and high-performance Na-Se batteries.
Collapse
Affiliation(s)
- Chunlei Wei
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - MengMeng Ge
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Timing Fang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China.
| | - Xiao Tang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China.
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
17
|
Cheng H, Shen Z, Liu W, Luo M, Huo F, Hui J, Zhu Q, Zhang H. Vanadium Intercalation into Niobium Disulfide to Enhance the Catalytic Activity for Lithium-Sulfur Batteries. ACS NANO 2023. [PMID: 37470340 DOI: 10.1021/acsnano.3c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Despite their high specific energy and great promise for next-generation energy storage, lithium-sulfur (Li-S) batteries suffer from polysulfide shuttling, slow redox kinetics, and poor cyclability. Catalysts are needed to accelerate polysulfide conversion and suppress the shuttling effect. However, a lack of structure-activity relationships hinders the rational development of efficient catalysts. Herein, we studied the Nb-V-S system and proposed a V-intercalated NbS2 (Nb3VS6) catalyst for high-efficiency Li-S batteries. Structural analysis and modeling revealed that undercoordinated sulfur anions of [VS6] octahedra on the surface of Nb3VS6 may break the catalytic inertness of the basal planes, which are usually the primary exposed surfaces of many 2D layered disulfides. Using Nb3VS6 as the catalyst, the resultant Li-S batteries delivered high capacities of 1541 mAh g-1 at 0.1 C and 1037 mAh g-1 at 2 C and could retain 73.2% of the initial capacity after 1000 cycles. Such an intercalation-induced high activity offers an alternative approach to building better Li-S catalysts.
Collapse
Affiliation(s)
- Huiting Cheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zihan Shen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mingting Luo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qingshan Zhu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huigang Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
18
|
Rectangular Transition Metal-rTCNQ Organic Frameworks Enabling Polysulfide Anchoring and Fast Electrocatalytic Activity in Li-Sulfur Batteries: A Density Functional Theory Perspective. Molecules 2023; 28:molecules28052389. [PMID: 36903634 PMCID: PMC10005228 DOI: 10.3390/molecules28052389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two-dimensional metal-organic frameworks (MOFs) have shown great development po-tential in the field of lithium-sulfur (Li-S) batteries. In this theoretical research work, we propose a novel 3d transition metals (TM)-embedded rectangular tetracyanoquinodimethane (TM-rTCNQ) as a potential high-performance sulfur host. The calculated results show that all TM-rTCNQ structures have excellent structural stability and metallic properties. Through exploring different adsorption patterns, we discovered that TM-rTCNQ (TM = V, Cr, Mn, Fe and Co) monolayers possess moderate adsorption strength for all polysulfide species, which is mainly due to the existence of the TM-N4 active center in these frame systems. Especially for the non-synthesized V-rCTNQ, the theoretical calculation fully predicts that the material has the most suitable adsorption strength for polysul-fides, excellent charging-discharging reaction and Li-ion diffusion performance. Additionally, Mn-rTCNQ, which has been synthesized experimentally, is also suitable for further experimental con-firmation. These findings not only provide novel MOFs for promoting the commercialization of Li-S batteries, but also provide unique insights for fully understanding their catalytic reaction mecha-nism.
Collapse
|
19
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li 2 S 2 -Li 2 S Reduction Catalysis in Ferromagnetic Atoms-based Lithium-Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2023; 62:e202215414. [PMID: 36321878 PMCID: PMC10107143 DOI: 10.1002/anie.202215414] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accelerating insoluble Li2 S2 -Li2 S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high-efficient lithium-sulfur battery cathodes, such as single-atom catalysts by offering high-density active sites to realize in situ reaction with solid Li2 S2 . However, the profound origin of diverse single-atom species on solid-solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li2 S2 -Li2 S reduction catalysis in ferromagnetic elements-based single-atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe-N4 -based cathodes exhibit the fastest deposition kinetics of Li2 S (226 mAh g-1 ) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li2 S2 -Li2 S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long-life batteries.
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhenyang Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhao Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Bo Yin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of ChemistryTechnische Universität BerlinBerlin10623Germany
| |
Collapse
|
20
|
Xia J, Cao R, Zhao L, Wu Q. Structural screening and descriptor exploration of black phosphorus carbide supported bifunctional catalysts for lithium-sulfur batteries. J Colloid Interface Sci 2023; 630:317-327. [DOI: 10.1016/j.jcis.2022.10.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
21
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li
2
S
2
−Li
2
S Reduction Catalysis in Ferromagnetic Atoms‐based Lithium‐Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Rui Yan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Menghao Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhao Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Xikui Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Bo Yin
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Shuang Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Chemistry Technische Universität Berlin Berlin 10623 Germany
| |
Collapse
|
22
|
Gu S, Xu S, Song X, Li H, Wang Y, Zhou G, Wang N, Chang H. Electrostatic Potential-Induced Co-N 4 Active Centers in a 2D Conductive Metal-Organic Framework for High-Performance Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50815-50826. [PMID: 36310356 DOI: 10.1021/acsami.2c13543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The use of single-atom catalysts is a promising approach to solve the issues of polysulfide shuttle and sluggish conversion chemistry in lithium-sulfur (Li-S) batteries. However, a single-atom catalyst usually contains a low content of active centers because more metal ions lead to generation of aggregation or the formation of nonatomic catalysts. Herein, a 2D conductive metal-organic framework [Co3(HITP)2] with abundant and periodic Co-N4 centers was decorated on carbon fiber paper as a functional interlayer for advanced Li-S batteries. The Co3(HITP)2-decorated interlayer exhibits a chemical anchoring effect and facilitates conversion kinetics, thus effectively restraining the polysulfide shuttle effect. Density functional theory calculations demonstrate that the Co-N4 centers in Co3(HITP)2 feature more intense electron density and more negative electrostatic potential distribution than those in the carbon matrix as the single-atom catalyst, thereby promoting the electrochemical performance due to the lower reaction Gibbs free energies and decomposition energy barriers. As a result, the optimized batteries deliver a high rate capacity of over 400 mA h g-1 at 4 C current and a satisfying capacity decay rate of 0.028% per cycle over 1000 cycles at 1 C. The designed Co3(HITP)2-decorated interlayer was used to prepare one of the most advanced Li-S batteries with excellent performance (reversible capacity of 762 mA h g-1 and 79.6% capacity retention over 500 cycles) under high-temperature conditions, implying its great potential for practical applications.
Collapse
Affiliation(s)
- Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, P. R. China
| | - Shuzheng Xu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, P. R. China
| | - Xiaoyi Song
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, P. R. China
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou545006, P. R. China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, P. R. China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen518063, P. R. China
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, P. R. China
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, P. R. China
| | - Nianxing Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, P. R. China
| | - Haixin Chang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou545006, P. R. China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, P. R. China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen518063, P. R. China
| |
Collapse
|
23
|
Liu K, Wang X, Gu S, Yuan H, Jiang F, Li Y, Tan W, Long Q, Chen J, Xu Z, Lu Z. N, S-Coordinated Co Single Atomic Catalyst Boosting Adsorption and Conversion of Lithium Polysulfides for Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204707. [PMID: 36193958 DOI: 10.1002/smll.202204707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Boosting reversible solid-liquid phase transformation from lithium polysulfides to Li2 S and suppressing the shuttling of lithium polysulfides from the cathode to the lithium anode are critical challenges in lithium-sulfur batteries. Here, sulfiphilic single atomic cobalt implanted in lithiophilic heteroatoms-dopped carbon (SACo@HC) matrix with a CoN3 S structure for high-performance lithium-sulfur batteries is reported. Density functional theory calculation and in situ experiments demonstrate that the optimal CoN3 S structure in SACo@HC can effectively improve the adsorption and redox conversion efficiency of lithium polysulfides. Consequently, the S-SACo@HC composite with sulfur loading of 80 wt% delivers a high capacity of 1425.1 mAh g-1 at 0.05 C and outstanding rate performance with 745.9 mAh g-1 at 4 C. Furthermore, a capacity of 680.8 mAh g-1 at 0.5 C with a low electrolyte/sulfur ratio (6 µL mg-1 ) can be achieved even after 300 cycles. With the harsh conditions of lean electrolyte (E/S = 4 µL mg-1 ) and high sulfur loading (5.4 mg cm-2 ), a superior area capacity of 5.8 mAh cm-2 can be obtained. This work contributes to building a profound understanding of the adsorption and interface engineering of lithium polysulfides and provides ideas to tackle the long-standing polysulfide shuttle problem of lithium-sulfur batteries.
Collapse
Affiliation(s)
- Kun Liu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyang Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuai Gu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huimin Yuan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feng Jiang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yingzhi Li
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wen Tan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiurong Long
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingjing Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenghe Xu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhouguang Lu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
24
|
Zhang Q, Zhang H, Hu P, Wu Y. Intrinsic Regularity of Catalytic Cobalt Chalcogenides in Lithium‐Sulfur Battery: Theoretical Study Delivers New Insights. Chemistry 2022; 28:e202201989. [DOI: 10.1002/chem.202201989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Qi Zhang
- Institute of Industry & Equipment Technology Hefei University of Technology Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Hefei University of Technology Hefei 230009 P.R. China
| | - Hui‐Ru Zhang
- Institute of Industry & Equipment Technology Hefei University of Technology Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Hefei University of Technology Hefei 230009 P.R. China
| | - Ping‐Ao Hu
- Institute of Industry & Equipment Technology Hefei University of Technology Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Hefei University of Technology Hefei 230009 P.R. China
| | - Yu‐Cheng Wu
- School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P.R. China
| |
Collapse
|
25
|
Yuan J, Xi B, Wang P, Zhang Z, Song N, An X, Liu J, Feng J, Xiong S. Multifunctional Atomic Molybdenum on Graphene with Distinctive Coordination to Solve Li and S Electrochemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203947. [PMID: 35980940 DOI: 10.1002/smll.202203947] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The improvement of lithium-sulfur batteries is still impeded by notorious shuttling effect and sluggish kinetics on the S cathode, and rampant Li dendrite formation on the Li anode makes it worse. Herein, a type of single-atom dispersed Mo on nitrogen-doped graphene (Mo/NG) with a distinctive Mo-N2 O2 -C coordination structure first serving as a multifunctional material is designed by a structure-oriented strategy to solve Li and S electrochemistry. Mo/NG with superior intrinsic properties endowed by the unique coordination configuration adsorbs soluble polysulfides and promotes bidirectional conversion of LiPSs at the cathode side. Meanwhile, the suitable binding strength of Mo/NG with lithium ions endows it with an attractive lithiophilic feature. Specifically, Mo/NG is able to work as the adaptor to redistribute lithium ions on the interface of separator and homogenize the lithium ion flux. Due to the suitable binding ability with Li+ , it does not interfere with the diffusion of lithium ions across and provides tunnels exclusive to lithium ions to generate fast and homogeneous flux. Ascribed to such unique multifunctionality, Li-S batteries assembled with Mo/NG exhibit excellent electrochemical performance including long cycling stability over 1000 cycles and high areal capacities under high sulfur mass loading.
Collapse
Affiliation(s)
- Jia Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ning Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan, 610106, P. R. China
| | - Jie Liu
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
26
|
Xu C, Ding B, Fan Z, Xu C, Xia Q, Li P, Dou H, Zhang X. Theoretical and Experimental Understanding of Metal Single-Atom Electrocatalysts for Accelerating the Electrochemical Reaction of Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38750-38757. [PMID: 35976077 DOI: 10.1021/acsami.2c09430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal single-atom materials have attracted tremendous attention in the research field of lithium-sulfur (Li-S) batteries because they can effectively improve the reaction kinetics of sulfur cathodes. However, it is still difficult to determine the best metal single-atom catalyst for Li-S batteries, due to the lack of a unified measurement and evaluation method. Herein, a series of metal single-atom- and nitrogen-doped graphene materials (M-NG, M = Fe, Co, Ni, Ir, Ru) have been prepared as the catalysts for promoting the reaction kinetics of the sulfur reduction reaction process. Using rotating disk electrode measurements and density functional theory-based theoretical calculations, Ni-NG was screened out to be the best catalyst. It is found that Ni-NG materials can provide a kinetically favorable pathway for the reversible conversion of polysulfide conversion, thus increasing the utilization of sulfur. By coating the Ni-NG materials on the separator as a multifunctional interlayer, a commercially available sulfur cathode presents a stable specific capacity of 701.8 mAh g-1 at a current rate of 0.5C over 400 cycles. Even with a high sulfur loading of 3.8 mg cm-2, a high areal capacity of 4.58 mAh cm-2 can be achieved. This work will provide a fundamental understanding of efficient single-atom catalyst materials for Li-S batteries.
Collapse
Affiliation(s)
- Chong Xu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518000, China
| | - Zengjie Fan
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chengyang Xu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qizhen Xia
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Peng Li
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518000, China
| |
Collapse
|
27
|
Liu G, Wang W, Zeng P, Yuan C, Wang L, Li H, Zhang H, Sun X, Dai K, Mao J, Li X, Zhang L. Strengthened d-p Orbital Hybridization through Asymmetric Coordination Engineering of Single-Atom Catalysts for Durable Lithium-Sulfur Batteries. NANO LETTERS 2022; 22:6366-6374. [PMID: 35904355 DOI: 10.1021/acs.nanolett.2c02183] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although single-atom catalysts (SACs) have been largely explored in lithium-sulfur (Li-S) batteries, the commonly reported nonpolar transition metal-N4 coordinations only demonstrate inferior adsorption and catalytic activity toward shuttled lithium polysulfides (LiPSs). Herein, single Fe atoms with asymmetric coordination configurations of Fe-N3C2-C were precisely designed and synthesized as efficient immobilizer and catalyst for LiPSs. The experimental and theoretical results elucidate that the asymmetrically coordinated Fe-N3C2-C moieties not only enhance the LiPSs anchoring capability by the formation of extra π-bonds originating from S p orbital and Fe dx2-y2/dxy orbital hybridization but also boost the redox kinetics of LiPSs with reduced Li2S precipitation/decomposition barrier, leading to suppressed shuttle effect. Consequently, the Li-S batteries assembled with Fe-N3C2-C exhibit high areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions. This work highlights the important role of coordination symmetry of SACs for promoting the practical application of Li-S batteries.
Collapse
Affiliation(s)
- Genlin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Wenmin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Pan Zeng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Cheng Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Lei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Hongtai Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Xuhui Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Kehua Dai
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jing Mao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
28
|
Liang Z, Shen J, Xu X, Li F, Liu J, Yuan B, Yu Y, Zhu M. Advances in the Development of Single-Atom Catalysts for High-Energy-Density Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200102. [PMID: 35238103 DOI: 10.1002/adma.202200102] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Indexed: 05/27/2023]
Abstract
Although lithium-sulfur (Li-S) batteries are promising next-generation energy-storage systems, their practical applications are limited by the growth of Li dendrites and lithium polysulfide shuttling. These problems can be mitigated through the use of single-atom catalysts (SACs), which exhibit the advantages of maximal atom utilization efficiency (≈100%) and unique catalytic properties, thus effectively enhancing the performance of electrode materials in energy-storage devices. This review systematically summarizes the recent progress in SACs intended for use in Li-metal anodes, S cathodes, and separators, briefly introducing the operating principles of Li-S batteries, the action mechanisms of the corresponding SACs, and the fundamentals of SACs activity, and then comprehensively describes the main strategies for SACs synthesis. Subsequently, the applications of SACs and the principles of SACs operation in reinforced Li-S batteries as well as other metal-S batteries are individually illustrated, and the major challenges of SACs usage in Li-S batteries as well as future development directions are presented.
Collapse
Affiliation(s)
- Ziwei Liang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jiadong Shen
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Xijun Xu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Fangkun Li
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jun Liu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Bin Yuan
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Min Zhu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| |
Collapse
|
29
|
Cao Y, Gu S, Han J, Yang QH, Lv W. The Catalyst Design for Lithium-Sulfur Batteries: Roles and Routes. CHEM REC 2022; 22:e202200124. [PMID: 35675916 DOI: 10.1002/tcr.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
Lithium-sulfur battery is a promising candidate for next-generation high energy density batteries due to its ultrahigh theoretical energy density. However, it suffers from low sulfur utilization, fast capacity decay, and the notorious "shuttle effect" of lithium polysulfides (LiPSs) due to the sluggish reaction kinetics, which severely restrict its practical applications. Using the electrocatalyst can accelerate the redox reactions between sulfur, LiPSs and Li2 S and suppress the shuttling of LiPSs, and thus, it is a promising strategy to solve the above problems, enabling the battery with high energy density and long cycling stability. In this personal account, we discuss the catalyst design for lithium-sulfur batteries according to the sulfur reduction reaction (SRR) and sulfur evolution reaction (SER) in the discharging and charging processes. The catalytic effects for each step in SRR and SER are highlighted and the homogenous catalysts, the selective catalysts, and the bidirectional catalysts are discussed, which can help guide the rational design of the catalysts and practical applications of lithium-sulfur batteries.
Collapse
Affiliation(s)
- Yun Cao
- Shenzhen Key Laboratory for Graphene-based Materials, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Sichen Gu
- Shenzhen Key Laboratory for Graphene-based Materials, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.,Department of Material Science and Engineering, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Junwei Han
- Shenzhen Key Laboratory for Graphene-based Materials, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Wei Lv
- Shenzhen Key Laboratory for Graphene-based Materials, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
30
|
Li J, Han C, Ou X, Tang Y. Concentrated Electrolyte for High-Performance Ca-Ion Battery Based on Organic Anode and Graphite Cathode. Angew Chem Int Ed Engl 2022; 61:e202116668. [PMID: 34994498 DOI: 10.1002/anie.202116668] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Due to the large abundance, low redox potential, and multivalent properties of calcium (Ca), Ca-ion batteries (CIBs) show promising prospects for energy storage applications. However, current research on CIBs faces the challenges of unsatisfactory cycling stability and capacity, mainly restricted by the lack of suitable electrolytes and electrode materials. Herein, we firstly developed a 3.5 m concentrated electrolyte with a calcium bis(fluorosulfonyl)imide (Ca(FSI)2 ) salt dissolved in carbonate solvents. This electrolyte significantly improved the intercalation capacity for anions in the graphite cathode and contributed to the reversible insertion of Ca2+ in the organic anode. By combining this concentrated electrolyte with the low-cost and environmentally friendly graphite cathode and organic anode, the assembled Ca-based dual-ion battery (Ca-DIB) exhibits 75.4 mAh g-1 specific discharge capacity at 100 mA g-1 and 84.7 % capacity retention over 350 cycles, among the best results known for CIBs.
Collapse
Affiliation(s)
- Jin Li
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Chengjun Han
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xuewu Ou
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
31
|
Li J, Han C, Ou X, Tang Y. Concentrated Electrolyte for High‐performance Ca‐ion Battery based on Organic Anode and Graphite Cathode. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin Li
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Chengjun Han
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Xuewu Ou
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Yongbing Tang
- Shenzhen institute of advanced technology Chinese Academy of Sciences Functional Thin Films Research Centre 1068 Xueyuan Avenue, Shenzhen University Town 518000 SHENZHEN CHINA
| |
Collapse
|