1
|
Tan X, Wang C, Wang J, Wang P, Xiao Y, Guo Y, Chen J, He W, Li Y, Cui H, Wang C. High-Entropy PdRhFeCoMo Metallene With High C1 Selectivity and Anti-Poisoning Ability for Ethanol Electrooxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409109. [PMID: 39559911 DOI: 10.1002/advs.202409109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/26/2024] [Indexed: 11/20/2024]
Abstract
The urgent demand for designing highly efficient electrocatalysts for ethanol oxidation reaction (EOR) with elevated C1 selectivity, robust anti-poisoning capability, and high mass activity presents a formidable challenge. Herein, a novel two-dimentional (2D) high-entropy PdRhFeCoMo metallene (PdRhFeCoMo HEM) electrocatalyst is successfully synthesized via a mild one-step solvothermal method. The PdRhFeCoMo HEM, characterized by intentionally designed multi-metallic ensembles and ultra-thin graphene-like structures, delivers an impressive mass activity of 7.47 A mgPd+Rh -1 and specific activity of 25.5 mA cm-2. Furthermore, it can retain a mass activity of 0.56 A mgPd+Rh -1 after undergoing 20000 s of continuous testing, demonstrating outstanding resistance to poisoning. More significantly, the PdRhFeCoMo HEM demonstrates an elevated capacity for C─C bond cleavage with a superior C1 selectivity of up to 84.12%. In situ spectroscopy analysis, combined with theoretical calculations, reveals that the deliberate design of components and structures effectively regulate the electronic properties of the Pd site, thereby enhancing the adsorption of reactant and reducing the reaction barrier of the C1 pathway. Finally, a flexible solid-state ethanol fuel cell assembled by PdRhFeCoMo HEM presents a maximum power density of 20.1 mW cm-2 and can operate continuously by repeatedly adding ethanol fuel.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chenhui Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiarui Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuhang Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianpo Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weidong He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
3
|
Fan D, Yao H, Sun L, Lv H, Liu B. 2D PtRhPb Mesoporous Nanosheets with Surface-Clean Active Sites for Complete Ethanol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407940. [PMID: 38962849 DOI: 10.1002/adma.202407940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The development of active and selective metal electrocatalysts for complete ethanol oxidation reaction (EOR) into desired C1 products is extremely promising for practical application of direct ethanol fuel cells. Despite some encouraging achievements, their activity and selectivity remain unsatisfactory. In this work, it is reported that 2D PtRhPb mesoporous nanosheets (MNSs) with anisotropic structure and surface-clean metal site perform perfectly for complete EOR electrocatalysis in both three-electrode and two-electrode systems. Different to the traditional routes, a selective etching strategy is developed to produce surface-clean mesopores while retaining parent anisotropy quasi-single-crystalline structure without the mesopore-forming surfactants. This method also allows the general synthesis of surface-clean mesoporous metals with other compositions and structures. When being performed for alkaline EOR electrocatalysis, the best PtRhPb MNSs deliver remarkably high activity (7.8 A mg-1) and superior C1 product selectivity (70% of Faradaic efficiency), both of which are much better than reported electrocatalysts. High performance is assigned to multiple structural and compositional synergies that not only stabilized key OHads intermediate by surface-clean mesopores but also separated the chemisorption of two carbons in ethanol by adjacent Pt and Rh sites, which facilitate the oxidation cleavage of stable C─C bond for complete EOR electrocatalysis.
Collapse
Affiliation(s)
- Dongping Fan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Xu Y, Li J, Hu M, Wu Z, Du Y. 2D petal-like PdAg nanosheets promote efficient electrocatalytic oxidation of ethanol and methanol. NANOSCALE 2024; 16:14096-14100. [PMID: 39007217 DOI: 10.1039/d4nr01537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The development of efficient alcohol electrooxidation catalysts is of vital importance for the commercialization of direct liquid fuel cells. As emerging advanced catalysts, two-dimensional (2D) noble metal nanomaterials have attracted much research attention due to their intrinsic structural advantages. Herein, we report the synthesis of petal-like PdAg nanosheets (NSs) with an ultrathin 2D structure and jagged edges via a facile wet-chemical approach, combining doping engineering and morphology tuning. Notably, the highly active sites and Pd-Ag composition endowed PdAg NSs with improved toxicity tolerance and substantially improved the durability toward the ethanol/methanol oxidation reaction (EOR/MOR). Moreover, the electronic effect and synergistic effect significantly enhanced the EOR and MOR activities in comparison with Pd NSs and commercial Pd/C. This work provides efficient catalysts for fuel electrooxidations and deep insight into the rational design and fabrication of novel 2D nanoarchitecture.
Collapse
Affiliation(s)
- Yuhua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- The School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215028, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Mengyun Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, PR China
| |
Collapse
|
5
|
Ju Q, Chen T, Xie Q, Wang M, Zhao K, Liu T, Fu L, Wang H, Chen Z, Li C, Deng Y. Ultrafine IrMnO x Nanocluster Decorated Amorphous PdS Nanowires as Efficient Electrocatalysts for High C1 Selectivity in the Alkaline Ethanol Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33416-33427. [PMID: 38904246 DOI: 10.1021/acsami.4c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
As a novel electrochemical energy conversion device, direct ethanol fuel cells are currently encountering two significant challenges: CO poisoning and the difficulty of C-C bond cleavage in ethanol. In this work, an amorphous PdS nanowires/ultrafine IrMnOx bimetallic oxides (denoted as a-PdS/IrMnOx NWs) catalyst with abundant oxide/metal (crystalline/amorphous) inverse heterogeneous interfaces was synthesized via a hydrothermal process succeeded by a nonthermal air-plasma treatment. This unique interfacial electronic structure along with the incorporation of oxyphilic metal has resulted in a significant enhancement in the electrocatalytic performance of a-PdS/IrMnOx NWs toward the ethanol oxidation reaction, achieving current densities of 12.45 mA·cm-2 and 3.68 A·mgPd-1. Moreover, the C1 pathway selectivity for ethanol oxidation has been elevated to 47%, exceeding that of other as-prepared Pd-based counterparts and commercial Pd/C catalysts. Density functional theory calculations have validated the findings that the decoration of IrMn species onto the amorphous PdS surface has induced a charge redistribution in the interface region. The redistribution of surface charges on the a-PdS/IrMnOx NWs catalyst results in a significant decrease in the activation energy required for C-C bond cleavage and a notable weakening of the CO binding strength at the Pd active sites. Consequently, it enhanced both the EOR C1 pathway selectivity and CO poisoning resistance to the a-PdS/IrMnOx NWs catalyst.
Collapse
Affiliation(s)
- Qianlin Ju
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Tao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Qianhui Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Manli Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Kaige Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Tong Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Liang Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zelin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Changjiu Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Zheng Z, Dong K, Yang X, Yuan Q. Crystalline-Amorphous Heterophase PdMoCrW Tetrametallene: Highly Efficient Oxygen Reduction Electrocatalysts for a Long-Term Zn-Air Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11307-11316. [PMID: 38739878 DOI: 10.1021/acs.langmuir.4c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metallenes have received sustained attention owing to their unique microstructure characteristics and compelling catalytic applications, but the synthesis of multielement crystalline-amorphous metallenes remains a formidable challenge. Herein, we report a one-step wet chemical reduction method to synthesize composition-tunable crystalline-amorphous heterophase PdMoCrW tetrametallene. As-synthesized PdMoCrW tetrametallene is composed of approximately six to seven atomic layers and has flexible crimpiness, a crystalline-amorphous heterophase structure, and high-valence metal species. Time-dependent experiments show that PdMoCrW tetrametallene follows a three-step growth mechanism that includes nucleation, lateral growth, and atom diffusion, respectively. The novel ultrathin structure, optimized Pd electronic structure, and hydrophilic surface together greatly promote the activity and stability of PdMoCrW tetrametallene in the alkaline oxygen reduction reaction. Pd75.9Mo9.4Cr8.9W5.8/C exhibits excellent mass and specific activities of 2.81 A mgPd-1 and 4.05 mA cm-2, which are 20.07/14.46 and 23.42/16.20 times higher than those of commercial Pt/C and Pd/C, respectively. Furthermore, a Zn-air battery assembled using Pd75.9Mo9.4Cr8.9W5.8/C as a cathode catalyst achieves a peak power density of 156 mW cm-2 and an ultralong durability of 329 h. This study reports an effective strategy for constructing crystalline-amorphous quaternary metallenes to advance non-Pt electrocatalysts toward oxygen reduction reaction (ORR) performance and for a Zn-air battery.
Collapse
Affiliation(s)
- Zhe Zheng
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kaiyu Dong
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
7
|
Yu Y, Lv Z, Liu Z, Sun Y, Wei Y, Ji X, Li Y, Li H, Wang L, Lai J. Activation of Ga Liquid Catalyst with Continuously Exposed Active Sites for Electrocatalytic C-N Coupling. Angew Chem Int Ed Engl 2024; 63:e202402236. [PMID: 38357746 DOI: 10.1002/anie.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Environmentally friendly electrocatalytic coupling of CO2 and N2 for urea synthesis is a promising strategy. However, it is still facing problems such as low yield as well as low stability. Here, a new carbon-coated liquid alloy catalyst, Ga79Cu11Mo10@C is designed for efficient electrochemical urea synthesis by activating Ga active sites. During the N2 and CO2 co-reduction process, the yield of urea reaches 28.25 mmol h-1 g-1, which is the highest yield reported so far under the same conditions, the Faraday efficiency (FE) is also as high as 60.6 % at -0.4 V vs. RHE. In addition, the catalyst shows excellent stability under 100 h of testing. Comprehensive analyses showed that sequential exposure of a high density of active sites promoted the adsorption and activation of N2 and CO2 for efficient coupling reactions. This coupling reaction occurs through a thermodynamic spontaneous reaction between *N=N* and CO to form a C-N bond. The deformability of the liquid state facilitates catalyst recovery and enhances stability and resistance to poisoning. Moreover, the introduction of Cu and Mo stimulates the Ga active sites, which successfully synthesises the *NCON* intermediate. The reaction energy barrier of the third proton-coupled electron transfer process rate-determining step (RDS) *NHCONH→*NHCONH2 was lowered, ensuring the efficient synthesis of urea.
Collapse
Affiliation(s)
- Yaodong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zheng Lv
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Ziyi Liu
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuyao Sun
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingying Wei
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiang Ji
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanyan Li
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongdong Li
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
8
|
Jiang N, Zhu L, Liu P, Zhang P, Gan Y, Zhao Y, Jiang Y. Laser Irradiation Synthesis of AuPd Alloy with Decreased Alloying Degree for Efficient Ethanol Oxidation Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1876. [PMID: 38673231 PMCID: PMC11052525 DOI: 10.3390/ma17081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The preparation of electrocatalysts with high performance for the ethanol oxidation reaction is vital for the large-scale commercialization of direct ethanol fuel cells. Here, we successfully synthesized a high-performance electrocatalyst of a AuPd alloy with a decreased alloying degree via pulsed laser irradiation in liquids. As indicated by the experimental results, the photochemical effect-induced surficial deposition of Pd atoms, combined with the photothermal effect-induced interdiffusion of Au and Pd atoms, resulted in the formation of AuPd alloys with a decreased alloying degree. Structural characterization reveals that L-AuPd exhibits a lower degree of alloying compared to C-AuPd prepared via the conventional co-reduction method. This distinct structure endows L-AuPd with outstanding catalytic activity and stability in EOR, achieving mass and specific activities as high as 16.01 A mgPd-1 and 20.69 mA cm-2, 9.1 and 5.2 times than that of the commercial Pd/C respectively. Furthermore, L-AuPd retains 90.1% of its initial mass activity after 300 cycles. This work offers guidance for laser-assisted fabrication of efficient Pd-based catalysts in EOR.
Collapse
Affiliation(s)
- Nan Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Liye Zhu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Peng Liu
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
| | - Pengju Zhang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuqi Gan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| | - Yijian Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; (N.J.); (L.Z.); (P.L.); (P.Z.); (Y.G.); (Y.J.)
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Centre of Laser Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Nie M, Xu Z, Wang Y, You H, Luo L, Li B, Mutahir S, Gan W, Yuan Q. Ultrafast synthesis of efficient TS-PtCoCu/CNTs composite with high feed-to-product conversion rate by Joule heating for electrocatalytic oxidation of ethanol. J Colloid Interface Sci 2024; 660:334-344. [PMID: 38244500 DOI: 10.1016/j.jcis.2024.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Due to the challenges involved in achieving high metal load, uniform metal dispersion and nanosized metal particles simultaneously, it is difficult to develop a simple protocol for the rapid and efficient synthesis of Pt-based composites for electrocatalytic ethanol oxidation reaction (EOR). In this study, a facile ultrafast thermal shock strategy via Joule heating was applied to fabricate a series of PtCoCu ternary nanoalloys decorated carbon nanotube composites (TS-PtCoCu/CNTs), without the need for a reducing agent or surfactant. The TS-PtCoCu/CNTs with optimal Pt content (∼15 %) exhibited excellent EOR activity, with mass and specific activity of 3.58 A mgPt-1 and 5.79 mA cm-2, respectively, which are 3.8 and 13.5 times higher than those of Pt/C. Compared with the control prepared through the traditional furnace annealing, the catalyst also showed excellent activity and stability. DFT calculations revealed that the TS-PtCoCu/CNTs possesses a downshifted d-band center, weakened CO adsorption and higher OH affinity compared with monometallic Pt, all of which lead to the preferred C1 pathway for EOR. This study demonstrates an ultrafast construction of a highly efficient Pt-Co-Cu ternary catalyst for EOR. Additionally, it provides insights into the reaction mechanism based on structural characterization, electrochemical characterization, and theoretical calculations.
Collapse
Affiliation(s)
- Mingxing Nie
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengyu Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Binghan Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
10
|
Liang C, Zhao R, Chen T, Luo Y, Hu J, Qi P, Ding W. Recent Approaches for Cleaving the C─C Bond During Ethanol Electro-Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308958. [PMID: 38342625 PMCID: PMC11022732 DOI: 10.1002/advs.202308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Indexed: 02/13/2024]
Abstract
Direct ethanol fuel cells (DEFCs) play an indispensable role in the cyclic utilization of carbon resources due to its high volumetric energy density, high efficiency, and environmental benign character. However, owing to the chemically stable carbon-carbon (C─C) bond of ethanol, its incomplete electrooxidation at the anode severely inhibits the energy and power density output of DEFCs. The efficiency of C─C bond cleaving on the state-of-the-art Pt or Pd catalysts is reported as low as 7.5%. Recently, tremendous efforts are devoted to this field, and some effective strategies are put forward to facilitate the cleavage of the C─C bond. It is the right time to summarize the major breakthroughs in ethanol electrooxidation reaction. In this review, some optimization strategies including constructing core-shell nanostructure with alloying effect, doping other metal atoms in Pt and Pd catalysts, engineering composite catalyst with interface synergism, introducing cascade catalytic sites, and so on, are systematically summarized. In addition, the catalytic mechanism as well as the correlations between the catalyst structure and catalytic efficiency are further discussed. Finally, the prevailing limitations and feasible improvement directions for ethanol electrooxidation are proposed.
Collapse
Affiliation(s)
- Chenjia Liang
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ruiyao Zhao
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Teng Chen
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Yi Luo
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Jianqiang Hu
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Ping Qi
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Weiping Ding
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
11
|
Yang X, Yuan Q, Sheng T, Wang X. Mesoporous Mo-doped PtBi intermetallic metallene superstructures to enable the complete electrooxidation of ethylene glycol. Chem Sci 2024; 15:4349-4357. [PMID: 38516075 PMCID: PMC10952108 DOI: 10.1039/d4sc00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Metallenes, intermetallic compounds, and porous nanocrystals are the three types of most promising advanced nanomaterials for practical fuel cell devices, but how to integrate the three structural features into a single nanocrystal remains a huge challenge. Herein, we report an efficient one-step method to construct freestanding mesoporous Mo-doped PtBi intermetallic metallene superstructures (denoted M-PtBiMo IMSs) as highly active and stable ethylene glycol oxidation reaction (EGOR) catalysts. The materials retained their catalytic performance, even in complex direct ethylene glycol fuel cells (DEGFCs). The M-PtBiMo IMSs showed EGOR mass and specific activities of 24.0 A mgPt-1 and 61.1 mA cm-2, respectively, which were both dramatically higher than those of benchmark Pt black and Pt/C. In situ infrared spectra showed that ethylene glycol underwent complete oxidation via a 10-electron CO-free pathway over the M-PtBiMo IMSs. Impressively, M-PtBiMo IMSs demonstrated a much higher power density (173.6 mW cm-2) and stability than Pt/C in DEGFCs. Density functional theory calculations revealed that oxophilic Mo species promoted the EGOR kinetics. This work provides new possibilities for designing advanced Pt-based nanomaterials to improve DEGFC performance.
Collapse
Affiliation(s)
- Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University Guiyang Guizhou province 550025 P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University Guiyang Guizhou province 550025 P. R. China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
12
|
Ye N, Sheng W, Zhang R, Yan B, Jiang Z, Fang T. Interfacial Electron Engineering of PdSn-NbN/C for Highly Efficient Cleavage of the C-C Bonds in Alkaline Ethanol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304990. [PMID: 37705122 DOI: 10.1002/smll.202304990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The splitting of the C-C bonds of ethanol remains a key issue to be addressed, despite tremendous efforts made over the past several decades. This study highlights the enhancement mechanism of inexpensive NbN-modified Pd1 Sn3 -NbN/C towards the C-C bonds cleavage for alkaline ethanol oxidation reaction (EOR). The optimal Pd1 Sn3 -NbN/C delivers a catalytic activity up to 43.5 times higher than that of commercial Pd/C and high carbonate selectivity (20.5%) toward alkaline EOR. Most impressively, the Pd1 Sn3 -NbN/C presents good durability even after 25 200 s of chronoamperometric testing. The enhanced catalytic performance is mainly due to the interfacial interaction between PdSn and NbN, demonstrated by multiple structural characterization results. In addition, in situ ATR-SEIRAS (Attenuated total reflection-surface enhanced infrared absorption spectroscopy) results suggest that NbN facilitates the C-C bonds cleavage towards the alkaline EOR, followed by the enhanced OH adsorption to promote the subsequent oxidation of C1 intermediates after doping Sn. DFT (density functional theory) calculations indicate that the activation barriers of the C-H bond cleavage in CH3 CH2 OH, CH3 CHOH, CH3 CHO, CH3 CO, CH2 CO, and the C-C bond cleavage in CH3 CO, CH2 CO, CHCO are evidently reduced and the removal of adsorbed CH3 CO and CO becomes easier on the PdSn-NbN/C catalyst surface.
Collapse
Affiliation(s)
- Na Ye
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Engineering Research Center of New Energy System Engineering and Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenchao Sheng
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030000, China
| | - Binhang Yan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhao Jiang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Engineering Research Center of New Energy System Engineering and Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Fang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Engineering Research Center of New Energy System Engineering and Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Tao L, Huang B, Zhao Y. Low-Dimensional High-Entropy Alloys for Advanced Electrocatalytic Reactions. CHEM REC 2023; 23:e202300097. [PMID: 37236145 DOI: 10.1002/tcr.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Low-dimensional high-entropy alloy (HEA) nanomaterials are widely employed as electrocatalysts for energy conversion reactions, due to their inherent advantages, including high electron mobility, rich catalytically active site, optimal electronic structure. Moreover, the high-entropy, lattice distortion, and sluggish diffusion effects also enable them to be promising electrocatalysts. A thorough understanding on the structure-activity relationships of low-dimensional HEA catalyst play a huge role in the future pursuit of more efficient electrocatalysts. In this review, we summarize the recent progress of low-dimensional HEA nanomaterials for efficient catalytic energy conversion. By systematically discussing the fundamentals of HEA and properties of low-dimensional nanostructures, we highlight the advantages of low-dimensional HEAs. Subsequently, we also present many low-dimensional HEA catalysts for electrocatalytic reactions, aiming to gain a better understanding on the structure-activity relationship. Finally, a series of upcoming challenges and issues are also thoroughly proposed as well as their future directions.
Collapse
Affiliation(s)
- Lei Tao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- Changzhou Sveck Photovoltaic New Material Co., Ltd, Changzhou, Jiangsu, 213200, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Baoyu Huang
- Changzhou Sveck Photovoltaic New Material Co., Ltd, Changzhou, Jiangsu, 213200, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
15
|
Zhao F, Yuan Q. Abundant Exterior/Interior Active Sites Enable Three-Dimensional PdPtBiTe Dumbbells C-C Cleavage Electrocatalysts for Actual Alcohol Fuel Cells. Inorg Chem 2023; 62:14815-14822. [PMID: 37647605 DOI: 10.1021/acs.inorgchem.3c02642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Developing high-activity electrocatalysts is of great significance for the commercialization of direct alcohol fuel cells (DAFCs), but it still faces challenges. Herein, three-dimensional (3D) porous PdPtBiTe dumbbells (DBs) were successfully fabricated via the visible photoassisted method. The alloying effect, defect-rich surface/interface and nanoscale cavity, and open pores make the 3D PdPtBiTe DBs a comprehensive and remarkable electrocatalyst for the C1-C3 alcohol (ethanol, ethylene glycol, glycerol, and methanol) oxidation reaction (EOR, EGOR, GOR, and MOR, respectively) in an alkaline electrolyte, and the results of in situ Fourier transform infrared spectra revealed a superior C-C bond cleavage ability. The 3D PdPtBiTe DBs exhibit ultrahigh EOR, EGOR, GOR, and MOR mass activities of 25.4, 23.2, 16.8, and 18.3 A mgPd + Pt-1, respectively, considerably surpassing those of the commercial Pt/C and Pd/C. Moreover, the mass peak power densities of 3D PdPtBiTe DBs in actual ethanol, ethylene glycol, glycerol, or methanol fuel cells increase to 409.5, 501.5, 558.0, or 601.3 mW mgPd + Pt-1 in O2, respectively. This study provides a new class of multimetallic nanomaterials as state-of-the-art multifunctional anode electrocatalysts for actual DAFCs.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| |
Collapse
|
16
|
Yang L, Wang K, Jin L, Xu H, Chen H. Engineering metallenes for boosting electrocatalytic biomass-oxidation-assisted hydrogen evolution reaction. Dalton Trans 2023; 52:11378-11389. [PMID: 37551456 DOI: 10.1039/d3dt01562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Metallenes exhibit great potential for catalytic reaction, particularly for the hydrogen evolution reaction (HER) and biomass oxidation reaction, due to their favorable electronic configurations, ultrahigh specific surface areas, and highly accessible surface atoms. Therefore, metallenes can function as bifunctional electrocatalysts to boost the energy-saving biomass-oxidation-assisted HER, and have attracted great interest. Given the growing importance of green hydrogen as an alternative energy source in recent years, it is timely and imperative to summarize the recent progress and current status of metallene-based catalysts for the biomass-oxidation-assisted HER. Here, we review the recent advances in metallenes in terms of composition and structural regulations including alloying, nonmetal doping, defect engineering, surface functionalization, and heterostructure engineering strategies and their applications in driving electrocatalytic HER, with special focus on biomass-oxidation-assisted hydrogen production. The underlying structure-activity relationship and mechanisms are also comprehensively discussed. Finally, we also propose the challenges and future directions of metallene-based catalysts for the applications in biomass-oxidation-assisted HER.
Collapse
Affiliation(s)
- Lida Yang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lie Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
17
|
Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, Li H. Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS NANO 2023. [PMID: 37367960 DOI: 10.1021/acsnano.3c01380] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Controlling the synthesis of metal nanostructures is one approach for catalyst engineering and performance optimization in electrocatalysis. As an emerging class of unconventional electrocatalysts, two-dimensional (2D) metallene electrocatalysts with ultrathin sheet-like morphology have gained ever-growing attention and exhibited superior performance in electrocatalysis owing to their distinctive properties originating from structural anisotropy, rich surface chemistry, and efficient mass diffusion capability. Many significant advances in synthetic methods and electrocatalytic applications for 2D metallenes have been obtained in recent years. Therefore, an in-depth review summarizing the progress in developing 2D metallenes for electrochemical applications is highly needed. Unlike most reported reviews on the 2D metallenes, this review starts by introducing the preparation of 2D metallenes based on the classification of the metals (e.g., noble metals, and non-noble metals) instead of synthetic methods. Some typical strategies for preparing each kind of metal are enumerated in detail. Then, the utilization of 2D metallenes in electrocatalytic applications, especially in the electrocatalytic conversion reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel oxidation reaction, CO2 reduction reaction, and N2 reduction reaction, are comprehensively discussed. Finally, current challenges and opportunities for future research on metallenes in electrochemical energy conversion are proposed.
Collapse
Affiliation(s)
- Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Yanna Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fengyu Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunqing Kang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Jungmok You
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Miharu Eguchi
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
18
|
Zhang M, Zhang X, Lv M, Yue X, Zheng Z, Xia H. Ethanol Oxidation via 12-Electron Pathway on Spiky Au@AuPd Nanoparticles Assisted by Near-Infrared Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205781. [PMID: 36775916 DOI: 10.1002/smll.202205781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Indexed: 05/04/2023]
Abstract
In this work, ethanol oxidation reaction (EOR) via 12-electron (C1-12e) pathway on spiky Au@AuPd nanoparticles (NPs) with ultrathin AuPd alloy shells is achieved in alkaline media with the assistance of the near-infrared (NIR) light. It is found that OH radicals can be produced from the OHads species adsorbed on the surfaces of Pd atoms led by surface plasmon resonance (SPR) effect of spiky Au@AuPd NPs under the irradiation of NIR light. Moreover, OH radicals play the key role for the achievement of EOR proceeded by the desirable C1-12e pathway because OH radicals can directly break the C-C bonds of ethanol. Accordingly, the electrocatalytic performance of spiky Au@AuPd NPs toward EOR under NIR light is greatly improved. For instance, their mass activity can be up to 33.2 A mgpd -1 in the 0.5 m KOH solution containing 0.5 m ethanol, which is about 158 times higher than that of commercial Pd/C catalysts (0.21 A mgpd -1 ) and is better than those of the state-of-the-art Pd-based catalysts reported in literature thus far, to the best of our knowledge. Moreover, their highest mass activity can be further improved to 118.3 A mgpd -1 in the 1.5 m KOH solution containing 1.25 m ethanol.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xiang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Min Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xinru Yue
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
19
|
Chu X, Wang K, Qian W, Xu H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chu X, Li J, Xu H, Qian W. Introducing Te for boosting electrocatalytic reactions. Dalton Trans 2023; 52:245-259. [PMID: 36519384 DOI: 10.1039/d2dt03253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The deployment of robust catalysts for electrochemical reactions is a critical topic for energy conversion techniques. Te-based nanomaterials have attracted increasing attention for their application in electrochemical reactions due to their positive influence on the electrocatalytic performance induced by their distinctive electronic and physicochemical properties. Herein, we have summarized the recent progress on Te-based nanocatalysts for electrocatalytic reactions by primarily focusing on the positive influence of Te on electrocatalysts. Firstly, Te-based nanomaterials can serve as an ideal template for the construction of well-defined nanostructures. Secondly, Te doping can significantly modify the electronic structure of the host catalyst, thereby, leading to the optimization of binding strength with intermediates. Furthermore, the Te etching strategy can also create a high density of surface defects, thereby leading to substantial improvement in the electrocatalytic performance. Additionally, many representative Te-based nanocatalysts for electrocatalytic reactions are also summarized and systematically discussed. Finally, a conclusive and perspective discussion is also provided to provide guidance for the future development of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| |
Collapse
|
21
|
Zhang R, Zhao Y, Guo Z, Liu X, Zhu L, Jiang Y. Highly Selective Pd Nanosheet Aerogel Catalyst with Hybrid Strain Induced by Laser Irradiation and P Doping Postprocess. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205587. [PMID: 36437112 DOI: 10.1002/smll.202205587] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Strain engineering of electrocatalysts provides an effective strategy to improve the intrinsic catalytic activity. Here, the defect-rich crystalline/amorphous Pd nanosheet aerogel with hybrid microstrain and lattice strain is synthesized by combining laser irradiation and phosphorus doping methods. The surface strain exhibited by the microstrain and lattice strain shifts the d-band center of the electrocatalyst, enhancing the adsorption of intermediates in the ethanol oxidation reaction and thus improving the catalytic performances. The measured mass activity, specific activity and C1-path selectivity of the Pd nanosheet aerogel are 4.48, 3.06, and 5.06 times higher than those of commercial Pd/C, respectively. These findings afford a new strategy for the preparation of highl activity and C1 pathway selective catalysts and provide insight into the catalytic mechanism of strain-rich heterojunction materials based on tunable surface strain values.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing, 100124, China
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yan Zhao
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing, 100124, China
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Ziang Guo
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing, 100124, China
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xuan Liu
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing, 100124, China
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Liye Zhu
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing, 100124, China
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yijian Jiang
- Key Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing, 100124, China
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
22
|
Wang H, Zheng H, Ling L, Fang Q, Jiao L, Zheng L, Qin Y, Luo Z, Gu W, Song W, Zhu C. Pd Metallene Aerogels with Single-Atom W Doping for Selective Ethanol Oxidation. ACS NANO 2022; 16:21266-21274. [PMID: 36441949 DOI: 10.1021/acsnano.2c09270] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of advanced electrocatalysts with satisfactory C1 pathway selectivity for the ethanol oxidation reaction (EOR) is critical. Herein, a bubbling CO-induced gelation method is developed in acetic acid at 50 °C to construct single-atom W-doped Pd metallene aerogels (denoted as SA W-Pd MAs) within 1 h. In light of the metallene structural advantages of noble metal aerogels and single-atom W decoration, the resultant SA W-Pd MAs exhibit an outstanding EOR performance with high C1 pathway selectivity. Density functional theory calculations validate that the SA W-Pd MAs greatly improve the formation of the CH3O intermediate and the transformation of poisonous CO species to CO2, thus resulting in high C1 pathway selectivity. Therefore, this work not only offers an effective gelation method to fabricate noble metal aerogels with atomic-scale building blocks but also presents guidance to develop high-efficiency EOR electrocatalysts.
Collapse
Affiliation(s)
- Hengjia Wang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huiling Zheng
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Ling Ling
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qie Fang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhen Luo
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
23
|
Wang Q, Li T, Yan S, Zhang W, Lv G, Xu H, Li H, Wang Y, Liu J. Boosting Hydrogen Production by Selective Anodic Electrooxidation of Ethanol over Trimetallic PdSbBi Nanoparticles: Composition Matters. Inorg Chem 2022; 61:16211-16219. [PMID: 36150124 DOI: 10.1021/acs.inorgchem.2c02888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conventional hydrogen evolution from water electrolysis is severely impeded by the sluggish kinetics of oxygen evolution reaction (OER). In this work, an integrated electrolysis system of replacing the anodic OER with a thermodynamically favorable ethanol oxidation reaction (EOR) has been developed by using PdSbBi/C as an electrocatalyst. To maximize the EOR performance, the composition of PdSbBi nanoparticles is tuned by varying the ratio of Sb and Bi precursors. Ternary PdSbBi-based electrocatalysts exhibit enhanced activity and stability toward EOR compared to commercial Pd/C and binary catalysts. In particular, the Pd76Sb17Bi7/C catalyst delivers a very high specific activity up to 52.4 mA cm-2 and mass activity of 2.66 A mg-1Pd. Besides, this EOR process is demonstrated to have high selectivity with acetic acid as the oxidation product in the electrolyte. When coupled with a cathodic platinum mash, the two-electrode electrolyzer cell requires a voltage input of merely 0.61 V to afford a current density of 10 mA cm-2. Density functional theory calculations reveal that the presence of Sb and Bi can promote the adsorption of hydroxide ions and facilitate the removal of reaction intermediates in the EOR pathway. This work provides a novel catalyst for the energy-efficient coproduction of acetic acid and hydrogen fuel.
Collapse
Affiliation(s)
- Qiuxia Wang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tong Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suxia Yan
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenjie Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoai Lv
- Yangzhou China-Power Hydrogen Equipment Co., Ltd., Yangzhou, Jiangsu 225000, China
| | - Hui Xu
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yong Wang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junfeng Liu
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
24
|
Chen P, Huang S. Quaternary PdCuNiP Porous Nanosheets with Enhanced Electrochemical Performance in the Ethanol Oxidation Reaction. Inorg Chem 2022; 61:14470-14476. [PMID: 36043986 DOI: 10.1021/acs.inorgchem.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to manipulate metal electrocatalysts with satisfactory performance for the ethanol oxidation reaction (EOR) is promising but still unsatisfactory for practical application in direct ethanol fuel cells. Beyond traditional metal-metal alloys, we herein report a novel metal-nonmetal alloy electrocatalyst that takes advantage of quaternary PdCuNiP alloy composition and the ultrathin/porous nanosheet (NS) structure. The optimized PdCuNiP porous NSs feature more undercoordinated active sites and modified electron/function structures, enabling better antipoisoning ability. Under alkaline conditions, this electrocatalyst shows excellent electrochemical EOR performance with a high EOR activity of 4.05 A mgPd-1 and a low activation energy of 21.2 kJ mol-1, comparable to the state-of-the-art electrocatalysts reported in the literature. Meanwhile, PdCuNiP porous NSs are electrocatalytically active for electrochemical oxidation of other fuels (methanol, glycerol, and glucose), highlighting their great potential for various direct alcohol fuel cells. The findings reported here may put forward some insights into designing new functional electrocatalysts for various fuel cell electrocatalysis and beyond.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Sa Huang
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
25
|
Lv H, Sun L, Wang Y, Liu S, Liu B. Highly Curved, Quasi-Single-Crystalline Mesoporous Metal Nanoplates Promote CC Bond Cleavage in Ethanol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203612. [PMID: 35640570 DOI: 10.1002/adma.202203612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The ability to manipulate metal nanocrystals with well-defined morphologies and structures is greatly important in material chemistry, catalysis chemistry, nanoscience, and nanotechnology. Although 2D metals serve as interesting platforms, further manipulating them in solution with highly penetrated mesopores and ideal crystallinity remains a huge challenge. Here, an easy yet powerful synthesis strategy for manipulating the mesoporous structure and crystallinity of 2D metals in a controlled manner with cetyltrimethylammonium chloride as the mesopore-forming surfactant and extra iodine-ion as the structure/facet-selective agent is reported. This strategy allows for preparing an unprecedented type of 2D quasi-single-crystalline mesoporous nanoplates (SMPs) with highly curved morphology and controlled metal composition. The products, for example, PdCu SMPs, feature abundant undercoordinated sites, optimized electronic structures, excellent electron/mass transfers, and confined mesopore environments. Curved PdCu SMPs exhibit remarkable electrocatalytic activity of 6.09 A mgPd -1 and stability for ethanol oxidation reaction (EOR) compared with its counterpart catalysts and commercial Pd/C. More importantly, PdCu SMPs are highly selective for EOR electrocatalysis that dramatically promotes C-C bond cleavage with a superior C1 pathway selectivity as high as 72.1%.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|