1
|
Wu Y, Wang Y, Sui G, Guo D, Chu D, Xu G, Li J, Li Y, Chai DF. Cobalt nanoparticles intercalation coupled with tellurium-doping MXene for efficient electrocatalytic water splitting. J Colloid Interface Sci 2024; 675:379-390. [PMID: 38972125 DOI: 10.1016/j.jcis.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Nowadays, the inherent re-stacking nature and weak d-p hybridization orbital interactions within MXene remains significant challenges in the field of electrocatalytic water splitting, leading to unsatisfactory electrocatalytic activity and cycling stability. Herein, this work aims to address these challenges and improve electrocatalytic performance by utilizing cobalt nanoparticles intercalation coupled with enhanced π-donation effect. Specifically, cobalt nanoparticles are integrated into V2C MXene nanosheets to mitigate the re-stacking issue. Meanwhile, a notable charge redistribution from cobalt to vanadium elevates orbital levels, reduces π*-antibonding orbital occupancy and alleviates Jahn-Teller distortion. Doping with tellurium induces localized electric field rearrangement resulting from the changes in electron cloud density. As a result, Co-V2C MXene-Te acquires desirable activity for hydrogen evolution reaction and oxygen evolution reaction with the overpotential of 80.8 mV and 287.7 mV, respectively, at the current density of -10 mA cm-2 and 10 mA cm-2. The overall water splitting device achieves an impressive low cell voltage requirement of 1.51 V to obtain 10 mA cm-2. Overall, this work could offer a promising solution when facing the re-stacking issue and weak d-p hybridization orbital interactions of MXene, furnishing a high-performance electrocatalyst with favorable electrocatalytic activity and cycling stability.
Collapse
Affiliation(s)
- Yousen Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Dawei Chu
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Guang Xu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266101, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
2
|
Pang N, Li Y, Wang C, Tong X, Wang M, Shi H, Wu D, Xiong D, Xu S, Sorokin PB, Wang L, Jiang L, Chu PK. Facilitating the Hydrogen Evolution Reaction on Basal-Plane S Sites on MoS 2@Ni 3S 2 by Dual Ti and N Plasma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066693 DOI: 10.1021/acsami.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Atomic engineering of the basal plane active sites in MoS2 holds great promise to boost the electrocatalytic activity for hydrogen evolution reactions (HER), yet the performance optimization and mechanism exploration are still not satisfactory. Herein, we proposed a dual-plasma engineering strategy to implant Ti and N heteroatoms into the basal plane of MoS2 supported by Ni3S2 nanorods on nickel foam (MSNF) for efficient electrocatalysis of HER. Owing to the low formation energy of Ti dopants in MoS2 and the extra charge carriers introduced by N dopants, the optimally codoped samples N1.0@Ti500-MSNF demonstrate significant morphology changes from nanorods to urchin-like nanospheres with the surface active areas increased by seven-fold, as well as enhanced electrical conductivity in comparison with the nondoped counterparts. The HER performance of N1.0@Ti500-MSNF is comparable with the Pt-based catalyst: overpotential of 26 mV at 20 mA cm-2, Tafel slope of 35.6 mV dec-1, and long-term stability over 50 h. First-principles calculation reveals that N doping accelerates the dissociation of water molecules while Ti doping activates the adjacent S sites for hydrogen adsorption by lowering the Gibbs free energy, resulting in excellent HER activity. This work thus provides an effective strategy for basal plane engineering of MoS2 heterostructures toward high-performance HER and sustainable energy supply at reasonable costs.
Collapse
Affiliation(s)
- Ning Pang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Yun Li
- School of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou 521041, P. R. China
| | - Chang Wang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Shanghai 201800, P. R. China
| | - Xin Tong
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Mengqiu Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Huiyun Shi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Dajun Wu
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China
| | - Dayuan Xiong
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Shaohui Xu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Pavel B Sorokin
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russian Federation
- Technological Institute for Superhard and Novel Carbon Materials, Troitsk, Moscow 142190, Russia
| | - Lianwei Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, P. R. China
| | - Lin Jiang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Shanghai 201800, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Cheng Y, Chen H, Zhang L, Xu X, Cheng H, Yan C, Qian T. Evolution of Grain Boundaries Promoted Hydrogen Production for Industrial-Grade Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313156. [PMID: 38242541 DOI: 10.1002/adma.202313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The development of efficient and durable high-current-density hydrogen production electrocatalysts is crucial for the large-scale production of green hydrogen and the early realization of hydrogen economic blueprint. Herein, the evolution of grain boundaries through Cu-mediated NiMo bimetallic oxides (MCu-BNiMo), which leading to the high efficiency of electrocatalyst for hydrogen evolution process (HER) in industrial-grade current density, is successfully driven. The optimal MCu0.10-BNiMo demonstrates ultrahigh current density (>2 A cm-2) at a smaller overpotential in 1 m KOH (572 mV), than that of BNiMo, which does not have lattice strain. Experimental and theoretical calculations reveal that MCu0.10-BNiMo with optimal lattice strain generated more electrophilic Mo sites with partial oxidation owing to accelerated charge transfer from Cu to Mo, which lowers the energy barriers for H* adsorption. These synergistic effects lead to the enhanced HER performance of MCu0.10-BNiMo. More importantly, industrial application of MCu0.10-BNiMo operated in alkaline electrolytic cell is also determined, with its current density reached 0.5 A cm-2 at 2.12 V and 0.1 A cm-2 at 1.79 V, which is nearly five-fold that of the state-of-the-art HER electrocatalyst Pt/C. The strategy provides valuable insights for achieving industrial-scale hydrogen production through a highly efficient HER electrocatalyst.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Huanyu Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Xinnan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Huili Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| |
Collapse
|
4
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shayan Angizi
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Sayed Ali Ahmad Alem
- Chair in
Chemistry of Polymeric Materials, Montanuniversität
Leoben, Leoben 8700, Austria
| | - Reyhaneh Goodarzi
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | | | - Hajar Ghanbari
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Robert Szoszkiewicz
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering and Institute for Nanoscience
and Nanotechnology, Sharif University of
Technology, 14588-89694 Tehran, Iran
- Center for
Nanoscience and Nanotechnology, Institute for Convergence Science
& Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Peter Kruse
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
5
|
Wei Y, Yi L, Wang R, Li J, Li D, Li T, Sun W, Hu W. A Unique Etching-Doping Route to Fe/Mo Co-Doped Ni Oxyhydroxide Catalyst for Enhanced Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301267. [PMID: 37144442 DOI: 10.1002/smll.202301267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Fe-doped Ni (oxy)hydroxide shows intriguing activity toward oxygen evolution reaction (OER) in alkaline solution, yet it remains challenging to further boost its performance. In this work, a ferric/molybdate (Fe3+ /MoO4 2- ) co-doping strategy is reported to promote the OER activity of Ni oxyhydroxide. The reinforced Fe/Mo-doped Ni oxyhydroxide catalyst supported by nickel foam (p-NiFeMo/NF) is synthesized via a unique oxygen plasma etching-electrochemical doping route, in which precursor Ni(OH)2 nanosheets are first etched by oxygen plasma to form defect-rich amorphous nanosheets, followed by electrochemical cycling to trigger simultaneously Fe3+ /MoO4 2- co-doping and phase transition. This p-NiFeMo/NF catalyst requires an overpotential of only 274 mV to reach 100 mA cm-2 in alkaline media, exhibiting significantly enhanced OER activity compared to NiFe layered double hydroxide (LDH) catalyst and other analogs. Its activity does not fade even after 72 h uninterrupted operation. In situ Raman analysis reveals that the intercalation of MoO4 2- is able to prevent the over-oxidation of NiOOH matrix from β to γ phase, thus keeping the Fe-doped NiOOH at the most active state.
Collapse
Affiliation(s)
- Yunpeng Wei
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Lingya Yi
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Rongfei Wang
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Junying Li
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Dazhi Li
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Tianhao Li
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Weihua Hu
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
6
|
Yu N, Wang J, Yu H, Yang D, Luo W, Lin X, Liu Y, Cai N, Xue Y, Yu F. Polysulfide induced synthesis of a MoS 2 self-supporting electrode with wide-layer-spacing for efficient electrocatalytic water splitting. Phys Chem Chem Phys 2023; 25:23277-23285. [PMID: 37608788 DOI: 10.1039/d3cp01185b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Efficient non-noble metal bifunctional electrocatalysts can increase the conversion rate of electric energy in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, a ball & sheet MoS2/Ni3S2 composite with wide-layer-spacing and high 1T-rich MoS2 is assembled on nickel foam (NF) via a two-step solvothermal method with polymeric sulfur (S-r-DIB) as the sulfur source. The obtained material serves as both the cathode and the anode toward overall water splitting in an alkaline electrolyte. The results proved that the interpenetration of MoS2/Ni3S2-p with a ball and sheet structure increased the material active surface area and exposed more catalytic active sites, which contributed to the penetration of solution and the transfer of charge/hydrion. Meanwhile, two different semiconductors of MoS2 and Ni3S2 along with the presence of ample active sulfur edge sites and few-layer, wide-layer-spacing structures of MoS2 lead to an outstanding electrocatalytic activity. In particular, the electrodes of MoS2/Ni3S2-p only need a battery voltage of 1.55 V at 10 mA cm-2. The bifunctional electrocatalyst MoS2/Ni3S2-p also shows excellent stability at large current densities during the electrochemical test.
Collapse
Affiliation(s)
- Ningbo Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Hongliang Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Daichunzi Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Wentao Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Xiao Lin
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yanping Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
7
|
Ren JT, Chen L, Tian WW, Song XL, Kong QH, Wang HY, Yuan ZY. Rational Synthesis of Core-Shell-Structured Nickel Sulfide-Based Nanostructures for Efficient Seawater Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300194. [PMID: 36965012 DOI: 10.1002/smll.202300194] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Versatile electrocatalysis at higher current densities for natural seawater splitting to produce hydrogen demands active and robust catalysts to overcome the severe chloride corrosion, competing chlorine evolution, and catalyst poisoning. Hereto, the core-shell-structured heterostructures composed of amorphous NiFe hydroxide layer capped Ni3 S2 nanopyramids which are directly grown on nickel foam skeleton (NiS@LDH/NF) are rationally prepared to regulate cooperatively electronic structure and mass transport for boosting oxygen evolution reaction (OER) performance at larger current densities. The prepared NiS@LDH/NF delivers the anodic current density of 1000 mA cm-2 at the overpotential of 341 mV in 1.0 m KOH seawater. The feasible surface reconstruction of Ni3 S2 -FeNi LDH interfaces improves the chemical stability and corrosion resistance, ensuring the robust electrocatalytic activity in seawater electrolytes for continuous and stable oxygen evolution without any hypochlorite production. Meanwhile, the designed Ni3 S2 nanopyramids coated with FeNi2 P layer (NiS@FeNiP/NF) still exhibit the improved hydrogen evolution reaction (HER) activity in 1.0 m KOH seawater. Furthermore, the NiS@FeNiP/NF||NiS@LDH/NF pair requires cell voltage of 1.636 V to attain 100 mA cm-2 with a 100% Faradaic efficiency, exhibiting tremendous potential for hydrogen production from seawater.
Collapse
Affiliation(s)
- Jin-Tao Ren
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Lei Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Wen-Wen Tian
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Xin-Lian Song
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Qing-Hui Kong
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Hao-Yu Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| |
Collapse
|
8
|
Low temperature plasma-assisted synthesis and modification of water splitting electrocatalysts. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Liu MM, Wu XM, Guo HX, Huang XG, Ying SM. Solvent Effect on the Fabrication of POMs-Based MOFs Microspheres: Dual-Function in Electrocatalytic Hydrogen Evolution and Catalytic Reduction of Cr6+. Catal Letters 2022. [DOI: 10.1007/s10562-022-04205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Wang F, Wu Y, Dong B, Lv K, Shi Y, Ke N, Hao L, Yin L, Bai Y, Xu X, Xian Y, Agathopoulos S. Robust Porous WC-Based Self-Supported Ceramic Electrodes for High Current Density Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106029. [PMID: 35338594 PMCID: PMC9130889 DOI: 10.1002/advs.202106029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 05/16/2023]
Abstract
Developing an economical, durable, and efficient electrode that performs well at high current densities and is capable of satisfying large-scale electrochemical hydrogen production is highly demanded. A self-supported electrocatalytic "Pt-like" WC porous electrode with open finger-like holes is produced through industrial processes, and a tightly bonded nitrogen-doped WC/W (WC-N/W) heterostructure is formed in situ on the WC grains. The obtained WC-N/W electrode manifests excellent durability and stability under multi-step current density in the range of 30-1000 mA cm-2 for more than 220 h in both acidic and alkaline media. Although WC is three orders of magnitude cheaper than Pt, the produced electrode demonstrates comparable hydrogen evolution reaction performance to the Pt electrode at high current density. Density functional theory calculations attribute its superior performance to the electrode structure and the modulated electronic structure at the WC-N/W interface.
Collapse
Affiliation(s)
- Feihong Wang
- CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yutong Wu
- CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Binbin Dong
- School of Materials Science and EngineeringHenan Key Laboratory of Special Protective MaterialsLuoyang Institute of Science and TechnologyLuoyangHenan471023P. R. China
| | - Kai Lv
- CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yangyang Shi
- CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Nianwang Ke
- CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Luyuan Hao
- CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Liangjun Yin
- School of Energy Science and EngineeringUniversity of Electronic Science and Technology of China2006 Xiyuan RoadChengduPR China
| | - Yu Bai
- School of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Xin Xu
- CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yuxi Xian
- CAS Key Laboratory of Mechanical Behaviors and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Simeon Agathopoulos
- Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGR‐451 10Greece
| |
Collapse
|
11
|
Chen Y, Wang Y, Yu J, Xiong G, Niu H, Li Y, Sun D, Zhang X, Liu H, Zhou W. Underfocus Laser Induced Ni Nanoparticles Embedded Metallic MoN Microrods as Patterned Electrode for Efficient Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105869. [PMID: 35112811 PMCID: PMC8981903 DOI: 10.1002/advs.202105869] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Transition metal nitrides have shown large potential in industrial application for realization of the high active and large current density toward overall water splitting, a strategy to synthesize an inexpensive electrocatalyst consisting of Ni nanoparticles embedded metallic MoN microrods cultured on roughened nickel sheet (Ni/MoN/rNS) through underfocus laser heating on NiMoO4 ·xH2 O under NH3 atmosphere is posited. The proposed laser preparation mechanism of infocus and underfocus modes confirms that the laser induced stress and local high temperature controllably and rapidly prepared the patterned Ni/MoN/rNS electrodes in large size. The designed Ni/MoN/rNS presents outstanding catalytic performance for hydrogen evolution reaction (HER) with a low overpotential of 67 mV to deliver a current density of 10 mA cm-2 and for the oxygen evolution reaction (OER) with a small overpotential of 533 mV to deliver 200 mA cm-2 . Density functional theory (DFT) calculations and Kelvin probe force microscopy (KPFM) further verify that the constructed interface of Ni/MoN with small hydrogen absorption Gibbs free energy (ΔGH* ) (-0.19 eV) and similar electrical conductivity between Ni and metallic MoN, which can explain the high intrinsic catalytic activity of Ni/MoN. Further, the constructed two-electrode system (-) Ni/MoN/rNS||Ni/MoN/rNS (+) is employed in an industrial water-splitting electrolyzer (460 mA cm-2 for 120 h), being superior to the performance of commercial nickel electrode.
Collapse
Affiliation(s)
- Yuke Chen
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Yijie Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Jiayuan Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Guowei Xiong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Hongsen Niu
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022P. R. China
| | - Yang Li
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022P. R. China
| | - Dehui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Xiaoli Zhang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| |
Collapse
|