1
|
McCutchin CA, Edgar KJ, Chen CL, Dove PM. Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification. Biomacromolecules 2024. [PMID: 39382567 DOI: 10.1021/acs.biomac.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Silica-organic composites are receiving renewed attention for their versatility and environmentally benign compositions. Of particular interest is how macromolecules interact with aqueous silica to produce functional materials that confer remarkable physical properties to living organisms. This Review first examines silicification in organisms and the biomacromolecule properties proposed to modulate these reactions. We then highlight findings from silicification studies organized by major classes of biomacromolecules. Most investigations are qualitative, using disparate experimental and analytical methods and minimally characterized materials. Many findings are contradictory and, altogether, demonstrate that a consistent picture of biomacromolecule-Si interactions has not emerged. However, the collective evidence shows that functional groups, rather than molecular classes, are key to understanding macromolecule controls on mineralization. With recent advances in biopolymer chemistry, there are new opportunities for hypothesis-based studies that use quantitative experimental methods to decipher how macromolecule functional group chemistry and configuration influence thermodynamic and kinetic barriers to silicification. Harnessing the principles of silica-macromolecule interactions holds promise for biocomposites with specialized applications from biomedical and clean energy industries to other material-dependent industries.
Collapse
Affiliation(s)
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M Dove
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Ehrlich H, Voronkina A, Tabachniсk K, Kubiak A, Ereskovsky A, Jesionowski T. Silactins and Structural Diversity of Biosilica in Sponges. Biomimetics (Basel) 2024; 9:393. [PMID: 39056834 PMCID: PMC11274843 DOI: 10.3390/biomimetics9070393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Sponges (phylum Porifera) were among the first metazoans on Earth, and represent a unique global source of highly structured and diverse biosilica that has been formed and tested over more than 800 million years of evolution. Poriferans are recognized as a unique archive of siliceous multiscaled skeletal constructs with superficial micro-ornamentation patterned by biopolymers. In the present study, spicules and skeletal frameworks of selected representatives of sponges in such classes as Demospongiae, Homoscleromorpha, and Hexactinellida were desilicified using 10% HF with the aim of isolating axial filaments, which resemble the shape and size of the original structures. These filaments were unambiguously identified in all specimens under study as F-actin, using the highly specific indicators iFluor™ 594-Phalloidin, iFluor™ 488-Phalloidin, and iFluor™ 350-Phalloidin. The identification of this kind of F-actins, termed for the first time as silactins, as specific pattern drivers in skeletal constructs of sponges opens the way to the fundamental understanding of their skeletogenesis. Examples illustrating the biomimetic potential of sophisticated poriferan biosilica patterned by silactins are presented and discussed.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Alona Voronkina
- Pharmacy Department, National Pirogov Memorial Medical University, Vinnytsya, Pirogov Street 56, 21018 Vinnytsia, Ukraine;
| | - Konstantin Tabachniсk
- International Institute of Biomineralogy GmbH, Am St.-Niclas Schacht 13, 09599 Freiberg, Germany
| | - Anita Kubiak
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
3
|
Shimizu K, Nishi M, Sakate Y, Kawanami H, Bito T, Arima J, Leria L, Maldonado M. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera. Nat Commun 2024; 15:181. [PMID: 38185711 PMCID: PMC10772126 DOI: 10.1038/s41467-023-44226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Metazoans use silicon traces but rarely develop extensive silica skeletons, except for the early-diverging lineage of sponges. The mechanisms underlying metazoan silicification remain incompletely understood, despite significant biotechnological and evolutionary implications. Here, the characterization of two proteins identified from hexactinellid sponge silica, hexaxilin and perisilin, supports that the three classes of siliceous sponges (Hexactinellida, Demospongiae, and Homoscleromorpha) use independent protein machineries to build their skeletons, which become non-homologous structures. Hexaxilin forms the axial filament to intracellularly pattern the main symmetry of the skeletal parts, while perisilin appears to operate in their thickening, guiding extracellular deposition of peripheral silica, as does glassin, a previously characterized hexactinellid silicifying protein. Distant hexaxilin homologs occur in some bilaterians with siliceous parts, suggesting putative conserved silicifying activity along metazoan evolution. The findings also support that ancestral Porifera were non-skeletonized, acquiring silica skeletons only after diverging into major classes, what reconciles molecular-clock dating and the fossil record.
Collapse
Affiliation(s)
- Katsuhiko Shimizu
- Platform for Community-based Research and Education, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8550, Japan.
| | - Michika Nishi
- Division of Agricultural Science, Graduate studies of Sustainability Science, Tottori University Graduate School, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Yuto Sakate
- Division of Agricultural Science, Graduate studies of Sustainability Science, Tottori University Graduate School, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Haruka Kawanami
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Tomohiro Bito
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Jiro Arima
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Laia Leria
- Sponge Ecobiology and Biotechnology Group, Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, 17300, Spain
| | - Manuel Maldonado
- Sponge Ecobiology and Biotechnology Group, Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, 17300, Spain.
| |
Collapse
|
4
|
Wysokowski M, Luu RK, Arevalo S, Khare E, Stachowiak W, Niemczak M, Jesionowski T, Buehler MJ. Untapped Potential of Deep Eutectic Solvents for the Synthesis of Bioinspired Inorganic-Organic Materials. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7878-7903. [PMID: 37840775 PMCID: PMC10568971 DOI: 10.1021/acs.chemmater.3c00847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Indexed: 10/17/2023]
Abstract
Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Rachel K. Luu
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Sofia Arevalo
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Eesha Khare
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Witold Stachowiak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Michał Niemczak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Markus J. Buehler
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Center
for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Wysokowski M, Machałowski T, Idaszek J, Chlanda A, Jaroszewicz J, Heljak M, Niemczak M, Piasecki A, Gajewska M, Ehrlich H, Święszkowski W, Jesionowski T. Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering. RSC Adv 2023; 13:21971-21981. [PMID: 37483675 PMCID: PMC10358318 DOI: 10.1039/d3ra02356g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (i.e., porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Adrian Chlanda
- Lukasiewicz Research Network - Institute of Microelectronics and Photonics, Flake Graphene Research Group 02-668 Warsaw Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology Piotrowo 3 61138 Poznan Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology Mickiewicza 30 30-059 Kraków Poland
| | - Hermann Ehrlich
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
- Center for Advanced Technologies, Adam Mickiewicz University Uniwersytetu Poznanskiego 10 61-614 Poznan Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| |
Collapse
|
6
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
7
|
Voronkina A, Romanczuk-Ruszuk E, Przekop RE, Lipowicz P, Gabriel E, Heimler K, Rogoll A, Vogt C, Frydrych M, Wienclaw P, Stelling AL, Tabachnick K, Tsurkan D, Ehrlich H. Honeycomb Biosilica in Sponges: From Understanding Principles of Unique Hierarchical Organization to Assessing Biomimetic Potential. Biomimetics (Basel) 2023; 8:234. [PMID: 37366830 DOI: 10.3390/biomimetics8020234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Structural bioinspiration in modern material science and biomimetics represents an actual trend that was originally based on the bioarchitectural diversity of invertebrate skeletons, specifically, honeycomb constructs of natural origin, which have been in humanities focus since ancient times. We conducted a study on the principles of bioarchitecture regarding the unique biosilica-based honeycomb-like skeleton of the deep-sea glass sponge Aphrocallistes beatrix. Experimental data show, with compelling evidence, the location of actin filaments within honeycomb-formed hierarchical siliceous walls. Principles of the unique hierarchical organization of such formations are discussed. Inspired by poriferan honeycomb biosilica, we designed diverse models, including 3D printing, using PLA-, resin-, and synthetic-glass-prepared corresponding microtomography-based 3D reconstruction.
Collapse
Affiliation(s)
- Alona Voronkina
- Pharmacy Department, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov str. 56, 21018 Vinnytsia, Ukraine
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Eliza Romanczuk-Ruszuk
- Faculty of Mechanical Engineering, Institute of Biomedical Engineering, Bialystok University of Technology, Wiejska Str. 45C, 15-351 Bialystok, Poland
| | - Robert E Przekop
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Pawel Lipowicz
- Faculty of Mechanical Engineering, Institute of Biomedical Engineering, Bialystok University of Technology, Wiejska Str. 45C, 15-351 Bialystok, Poland
| | - Ewa Gabriel
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego, 61-614 Poznan, Poland
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Milosz Frydrych
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego, 61-614 Poznan, Poland
| | - Pawel Wienclaw
- Faculty of Physics, University of Warsaw, Pasteura 7, 02-093 Warsaw, Poland
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Konstantin Tabachnick
- International Institute of Biomineralogy GmbH, Am St.-Niclas Schacht 13, 09599 Freiberg, Germany
| | - Dmitry Tsurkan
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Hermann Ehrlich
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
8
|
Francis WR, Eitel M, Vargas S, Garcia-Escudero CA, Conci N, Deister F, Mah JL, Guiglielmoni N, Krebs S, Blum H, Leys SP, Wörheide G. The genome of the reef-building glass sponge Aphrocallistes vastus provides insights into silica biomineralization. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230423. [PMID: 37351491 PMCID: PMC10282587 DOI: 10.1098/rsos.230423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Well-annotated and contiguous genomes are an indispensable resource for understanding the evolution, development, and metabolic capacities of organisms. Sponges, an ecologically important non-bilaterian group of primarily filter-feeding sessile aquatic organisms, are underrepresented with respect to available genomic resources. Here we provide a high-quality and well-annotated genome of Aphrocallistes vastus, a glass sponge (Porifera: Hexactinellida) that forms large reef structures off the coast of British Columbia (Canada). We show that its genome is approximately 80 Mb, small compared to most other metazoans, and contains nearly 2500 nested genes, more than other genomes. Hexactinellida is characterized by a unique skeletal architecture made of amorphous silicon dioxide (SiO2), and we identified 419 differentially expressed genes between the osculum, i.e. the vertical growth zone of the sponge, and the main body. Among the upregulated ones, mineralization-related genes such as glassin, as well as collagens and actins, dominate the expression profile during growth. Silicateins, suggested being involved in silica mineralization, especially in demosponges, were not found at all in the A. vastus genome and suggests that the underlying mechanisms of SiO2 deposition in the Silicea sensu stricto (Hexactinellida + Demospongiae) may not be homologous.
Collapse
Affiliation(s)
- Warren R. Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Catalina A. Garcia-Escudero
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Deister
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jasmine L. Mah
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
| | - Nadège Guiglielmoni
- Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
9
|
Zhang M, Wang X, Xue Y, Li J, Wang J, Fang C, Zhu L. Robust and Scalable In Vitro Surface Mineralization of Inert Polymers with a Rationally Designed Molecular Bridge. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8730-8741. [PMID: 36735823 DOI: 10.1021/acsami.2c21286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The artificial integration of inorganic materials onto polymers to create the analogues of natural biocomposites is an attractive field in materials science. However, due to significant diversity in the interfacial properties of two kinds of materials, advanced synthesis methods are quite complicated and the resultant materials are always vulnerable to external environments, which limits their application scenarios and makes them unsuitable for scalable production. Herein, we report a simple and universal approach to achieve robust and scalable surface mineralization of polymers using a rationally designed triple functional molecular bridge of fluorosilane, 3-[(perfluorohexyl sulfonyl) amino] propyltriethoxy silane (PFSS). In a two-step solution deposition, the fluoroalkyl and siloxane of the PFSS take charge of its adhesion and immobilization onto polymers by hydrophobic interaction and wrapping-like chemical cross-linking, and then the assembly and growth of inorganic nanoclusters for integration are achieved by strong chemical coordination of PFSS sulfonamide. The versatile mineralization of inorganic oxides (e.g., TiO2, SiO2, and Fe2O3) onto chemically inert polymer surfaces was realized very well. The resultant mineralized materials exhibit robust and multiple functionalities for hostile applications, such as hydrophilic membranes for removing oils in strong acidic and alkaline wastewaters, fabrics with advanced anti-bacteria for healthy wearing, and plates with strong mechanical performance for better use. Experimental results and theoretical calculations confirmed the homogenous distribution of the PFSS onto polymers via cross-linking for robust coordination with inorganic oxides. These results demonstrate a skillful enlightenment in the design of high-performance mineralized polymer materials used as membranes, fabrics, and medical devices.
Collapse
Affiliation(s)
- Mengxiao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Xiaohe Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunyun Xue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jiaqi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jianyu Wang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing312000, China
| |
Collapse
|
10
|
Łukowiak M, Van Soest R, Klautau M, Pérez T, Pisera A, Tabachnick K. The terminology of sponge spicules. J Morphol 2022; 283:1517-1545. [PMID: 36208470 DOI: 10.1002/jmor.21520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 01/19/2023]
Abstract
Sponges (Porifera) are a diverse and globally distributed clade of benthic organisms, with an evolutionary history reaching at least the Ediacaran-Cambrian (541 Ma) boundary interval. Throughout their research history, sponges have been subjects of intense studies in many fields, including paleontology, evolutionary biology, and even bioengineering and pharmacology. The skeletons of sponges are mostly characterized by the presence of mineral elements termed spicules, which structurally support the sponge bodies, though they also minimize the metabolic cost of water exchange and deter predators. The description of the spicules' shape and the skeleton organization represents the fundamental basis of sponge taxonomy and systematics. Here, we provide an illustrated catalogue of sponge spicules, which is based on previous works on sponge spicules, for example, and gathers and updates all terms that are currently used in sponge descriptions. Each spicule type is further illustrated through high quality scanning electron microscope micrographs. It is expected to be a valuable source that will facilitate spicule identification and, in certain cases, also enable sponge classification.
Collapse
Affiliation(s)
- Magdalena Łukowiak
- Department of Environmental Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Rob Van Soest
- Naturalis Biodiversity Center, Dept. Marine Biodiversity, Leiden, The Netherlands
| | - Michelle Klautau
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thierry Pérez
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Station Marine d'Endoume, Marseille, France
| | - Andrzej Pisera
- Department of Environmental Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Konstantin Tabachnick
- Shirshov Institute of Oceanology of Academy of Sciences of Russia, Moscow, Russian Federation
| |
Collapse
|
11
|
Elias J, Angelini T, Martindale MQ, Gower L. Assessment of Optimal Conditions for Marine Invertebrate Cell-Mediated Mineralization of Organic Matrices. Biomimetics (Basel) 2022; 7:biomimetics7030086. [PMID: 35892356 PMCID: PMC9326593 DOI: 10.3390/biomimetics7030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular strategies and regulation of their crystallization mechanisms are essential to the formation of biominerals, and harnessing these strategies will be important for the future creation of novel non-native biominerals that recapitulate the impressive properties biominerals possess. Harnessing these biosynthetic strategies requires an understanding of the interplay between insoluble organic matrices, mineral precursors, and soluble organic and inorganic additives. Our long-range goal is to use a sea anemone model system (Nematostella vectensis) to examine the role of intrinsically disordered proteins (IDPs) found in native biomineral systems. Here, we study how ambient temperatures (25–37 °C) and seawater solution compositions (varying NaCl and Mg ratios) will affect the infiltration of organic matrices with calcium carbonate mineral precursors generated through a polymer-induced liquid-precursor (PILP) process. Fibrillar collagen matrices were used to assess whether solution conditions were suitable for intrafibrillar mineralization, and SEM with EDS was used to analyze mineral infiltration. Conditions of temperatures 30 °C and above and with low Mg:Ca ratios were determined to be suitable conditions for calcium carbonate infiltration. The information obtained from these observations may be useful for the manipulation and study of cellular secreted IDPs in our quest to create novel biosynthetic materials.
Collapse
Affiliation(s)
- Jeremy Elias
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Mark Q. Martindale
- Whitney Laboratory of Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA;
| | - Laurie Gower
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence:
| |
Collapse
|
12
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|