1
|
Song J, Li Z, Sun S, Yang C, Cai Z, Wang X, Yue M, Zhang M, Wang H, Farouk A, Hamdy MS, Sun X, Tang B. Citrate ions-modified NiFe layered double hydroxide for durable alkaline seawater oxidation. J Colloid Interface Sci 2025; 679:1-8. [PMID: 39432952 DOI: 10.1016/j.jcis.2024.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Seawater electrolysis taking advantage of coastal/offshore areas is acknowledged as a potential way of large-scale producing H2 to substitute traditional technology. However, anodic catalysts with high overpotentials and limited lifespans (caused by chloride-induced competitive chemical reactions) hinder the system of seawater electrolysis for H2 production. Herein, we present a citrate anion (CA) modified NiFe layered double hydroxide nanosheet array on nickel foam (NiFe LDH@NiFe-CA/NF), which serves as an efficient and stable electrocatalyst towards long-term alkaline seawater oxidation. It requires only a low overpotential of 387 mV to achieve a current density of 1000 mA cm-2, outperforming NiFe LDH/NF (414 mV). Moreover, NiFe LDH@NiFe-CA/NF exhibits continuous oxygen evolution testing for 300 h at 1000 mA cm-2 due to its anti-corrosion characterization. Additionally, the fabricated cell can stably operate at 300 mA cm-2 (60 °C, 6 M KOH + seawater) and only require 1.69 V, achieving low energy consumption of seawater splitting.
Collapse
Affiliation(s)
- Jiayun Song
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Xiaoyan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Meng Yue
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Hefeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia
| | - Mohamed S Hamdy
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China; Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Laoshan Laboratory, Qingdao 266237, Shandong, China.
| |
Collapse
|
2
|
Yaseen W, Xie M, Yusuf BA, Meng S, Khan I, Xie J, Xu Y. Anchoring Ni(OH) 2-CeO x Heterostructure on FeOOH-Modified Nickel-Mesh for Efficient Alkaline Water-Splitting Performance with Improved Stability under Quasi-Industrial Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403971. [PMID: 39012083 DOI: 10.1002/smll.202403971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Developing low-cost and industrially viable electrode materials for efficient water-splitting performance and constructing intrinsically active materials with abundant active sites is still challenging. In this study, a self-supported porous network Ni(OH)2-CeOx heterostructure layer on a FeOOH-modified Ni-mesh (NiCe/Fe@NM) electrode is successfully prepared by a facile, scalable two-electrode electrodeposition strategy for overall alkaline water splitting. The optimized NiCe0.05/Fe@NM catalyst reaches a current density of 100 mA cm-2 at an overpotential of 163 and 262 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1.0 m KOH with excellent stability. Additionally, NiCe0.05/Fe@NM demonstrates exceptional HER performance in alkaline seawater, requiring only 148 mV overpotential at 100 mA cm-2. Under real water splitting conditions, NiCe0.05/Fe@NM requires only 1.701 V to achieve 100 mA cm-2 with robust stability over 1000 h in an alkaline medium. The remarkable water-splitting performance and stability of the NiCe0.05/Fe@NM catalyst result from a synergistic combination of factors, including well-optimized surface and electronic structures facilitated by an optimal Ce ratio, rapid reaction kinetics, a superhydrophilic/superaerophobic interface, and enhanced intrinsic catalytic activity. This study presents a simple two-electrode electrodeposition method for the scalable production of self-supported electrocatalysts, paving the way for their practical application in industrial water-splitting processes.
Collapse
Affiliation(s)
- Waleed Yaseen
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Meng Xie
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bashir Adegbemiga Yusuf
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Suci Meng
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jimin Xie
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Jiangke Graphene Research Institure Co., LTD, Jiangsu Jiangke Composite Material Co., LTD, Nanjing, 210094, P. R. China
| | - Yuanguo Xu
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
3
|
Wu Y, Yu Y, Shen W, Jiang Y, He R, Li M. Activating active motifs in Ni-Fe oxide by introducing dual-defect for oxygen evolution reaction in alkaline seawater. J Colloid Interface Sci 2024; 670:132-141. [PMID: 38759268 DOI: 10.1016/j.jcis.2024.05.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Developing simple and energy-saving pathways to prepare high-efficient and robust non-noble metal based electrocatalysts remains a huge challenge to hydrogen production from seawater electrolysis. Here we demonstrate a facile hydrothermal-calcination-etching approach that simultaneously achieves the required surface N doping and Fe vacancies generation to activate the Ni-O-Fe active motifs in N-vFe-NiFe2O4/NF. The unique localized environments (Ni-N-Fe structures and unsaturated O- and N-coordination) due to dual-defect strategy can effectively regulate the electronic structure of the Ni-O-Fe motif to make the motif more reactive. As a result, the N-vFe-NiFe2O4/NF catalyst exhibits overpotentials of 210, 213 and 222 mV to deliver 100 mA cm-2 in 1.0 M KOH, simulated seawater and alkaline seawater environments, respectively. Theoretical calculations prove that the Ni-O-Fe structure is the active motif and that the presence of special localized environments can optimize the adsorption of key intermediates on the activated active motifs.
Collapse
Affiliation(s)
- Yucheng Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yanli Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Wen N, Wang H, Liu Q, Song K, Jiao X, Xia Y, Chen D. Field-Effect Enhancement of Non-Faradaic Processes at Interfaces Governs Electrocatalytic Water Splitting Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403206. [PMID: 38937998 PMCID: PMC11434135 DOI: 10.1002/advs.202403206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/16/2024] [Indexed: 06/29/2024]
Abstract
Recognizing the essential factor governing interfacial hydrogen/oxygen evolution reactions (HER/OER) is central to electrocatalytic water-splitting. Traditional strategies aiming at enhancing electrocatalytic activities have mainly focused on manipulating active site valencies or coordination environments. Herein, the role of interfacial adsorption is probed and modulated by the topological construct of the electrocatalyst, a frequently underestimated non-Faradaic mechanism in the dynamics of electrocatalysis. The engineered Co0.75Fe0.25P nanorods, anchored with FeOx clusters, manifest a marked amplification of the surface electric field, thus delivering a substantially improved bifunctional electrocatalytic performance. In alkaline water splitting anion exchange membrane (AEM) electrolyzer, the current density of 1.0 A cm-2 can be achieved at a cell voltage of only 1.73 V for the FeOx@Co0.75Fe0.25P|| FeOx@Co0.75Fe0.25P pairs for 120 h of continuous operation at 1.0 A cm-2. Detailed investigations of electronic structures, combined with valence state and coordination geometry assessments, reveal that the enhancement of catalytic behavior in FeOx@Co0.75Fe0.25P is chiefly attributed to the strengthened adsorptive interactions prompted by the intensified electric field at the surface. The congruent effects observed in FeOx-cluster-decorated Co0.75Fe0.25P nanosheets underscore the ubiquity of this effect. The results put forth a compelling proposition for leveraging interfacial charge densification via deliberate cluster supplementation.
Collapse
Affiliation(s)
- Ning Wen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Haihua Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Qilu Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kepeng Song
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuguo Xia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
5
|
Zhang S, Xu W, Chen H, Yang Q, Liu H, Bao S, Tian Z, Slavcheva E, Lu Z. Progress in Anode Stability Improvement for Seawater Electrolysis to Produce Hydrogen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311322. [PMID: 38299450 DOI: 10.1002/adma.202311322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Seawater electrolysis for hydrogen production is a sustainable and economical approach that can mitigate the energy crisis and global warming issues. Although various catalysts/electrodes with excellent activities have been developed for high-efficiency seawater electrolysis, their unsatisfactory durability, especially for anodes, severely impedes their industrial applications. In this review, attention is paid to the factors that affect the stability of anodes and the corresponding strategies for designing catalytic materials to prolong the anode's lifetime. In addition, two important aspects-electrolyte optimization and electrolyzer design-with respect to anode stability improvement are summarized. Furthermore, several methods for rapid stability assessment are proposed for the fast screening of both highly active and stable catalysts/electrodes. Finally, perspectives on future investigations aimed at improving the stability of seawater electrolysis systems are outlined.
Collapse
Affiliation(s)
- Sixie Zhang
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenwen Xu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Haocheng Chen
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qihao Yang
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hua Liu
- Department of Strategic Development, Zhejiang Qiming Electric Power Group CO.LTD, Zhoushan, 316099, P. R. China
| | - Shanjun Bao
- Department of Strategic Development, Zhejiang Qiming Electric Power Group CO.LTD, Zhoushan, 316099, P. R. China
| | - Ziqi Tian
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Evelina Slavcheva
- "Acad. Evgeni Budevski" Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Akad. G. Bonchev 10, Sofia, 1113, Bulgaria
| | - Zhiyi Lu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
7
|
Hu T, Liu J, Yuan H, Zhang L, Wang Y. Interface Charge Distribution Engineering of Pd-CeO 2 /C for Efficient Carbohydrazide Oxidation Reaction. CHEMSUSCHEM 2024; 17:e202301078. [PMID: 37723645 DOI: 10.1002/cssc.202301078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Carbohydrazide electrooxidation reaction (COR) is a potential alternative to oxygen evolution reaction in water splitting process. However, the sluggish kinetics process impels to develop efficient catalysts with the aim of the widespread use of such catalytic system. Since COR concerns the adsorption/desorption of reactive species on catalysts, the electronic structure of electrocatalyst can affect the catalytic activity. Interface charge distribution engineering can be considered to be an efficient strategy for improving catalytic performance, which facilitates the cleavage of chemical bond. Herein, highly dispersed Pd nanoparticles on CeO2 /C catalyst are prepared and the COR catalytic performance is investigated. The self-driven charge transfer between Pd and CeO2 can form the local nucleophilic and electrophilic region, promoting to the adsorption of electron-withdrawing and electron-donating group in carbohydrazide molecule, which facilitates the cleavage of C-N bond and the carbohydrazide oxidation. Due to the local charge distribution, the Pd-CeO2 /C exhibits superior COR catalytic activity with a potential of 0.27 V to attain 10 mA cm-2 . When this catalyst is used for energy-efficient electrolytic hydrogen production, the carbohydrazide electrolysis configuration exhibits a low cell voltage (0.6 V at 10 mA cm-2 ). This interface charge distribution engineering can provide a novel strategy for improving COR catalytic activity.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Jiali Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Hongjie Yuan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Limin Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Ying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| |
Collapse
|
8
|
Liu X, Yu Q, Qu X, Wang X, Chi J, Wang L. Manipulating Electron Redistribution in Ni 2 P for Enhanced Alkaline Seawater Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307395. [PMID: 37740701 DOI: 10.1002/adma.202307395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Developing bifunctional electrocatalyst for seawater splitting remains a persistent challenge. Herein, an approach is proposed through density functional theory (DFT) preanalysis to manipulate electron redistribution in Ni2 P addressed by cation doping and vacancy engineering. The needle-like Fe-doped Ni2 P with P vacancy (Fe-Ni2 Pv) is successfully synthesized on nickel foam, exhibiting a superior bifunctional hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalytic activity for seawater electrolysis in alkaline condition. As a result, bifunctional Fe-Ni2 Pv achieves the industrially required current densities of 1.0 and 3.0 A cm-2 at low voltages of 1.68 and 1.73 V, respectively, for seawater splitting at 60 °C in 6.0 m KOH circumstances. The theoretical calculation and the experimental results collectively reveal the reasons for the enhancement of catalyst activity. Specifically, Fe doping and P vacancies can accelerate the reconstruction of OER active species and optimize the hydrogen adsorption free energy (ΔGH* ) for HER. In addition, the active sites of Fe-Ni2 Pv are identified, where P vacancies greatly improve the electrical conductivity and Ni sites are the dominant OER active centers, meanwhile Fe atoms as active centers for the HER. The study provides a deep insight into the exploration for the enhancement of activity of nickel-based phosphide catalysts and the identification of their real active centers.
Collapse
Affiliation(s)
- Xiaobin Liu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qingping Yu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xinyue Qu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xinping Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jingqi Chi
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
9
|
Chen X, Zhang Y, Yang J, Xiao JD, Yang Z, Wang J. Boosting Oxygen Evolution Performance of Nickel-Iron Layered Double Hydroxides by Controlling Oxygen Vacancies and Structural Disorder via n-Butyllithium Treatment. Inorg Chem 2023; 62:19795-19803. [PMID: 37987702 DOI: 10.1021/acs.inorgchem.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nickel-iron-based layered double hydroxides (NiFe-LDHs) are promising catalysts for the oxygen evolution reaction (OER) because of their high activity, availability, and low cost. Defect engineering, particularly the formation of oxygen vacancies, can improve the catalytic activity of NiFe-LDHs. However, the controllable introduction of uniform oxygen vacancies remains challenging. Herein, an n-butyllithium treatment method is developed to tune oxygen vacancy defects and change the degree of amorphization in NiFe-LDHs via deep reduction, followed by partial oxidization at low temperatures. Interestingly, the Ni in the NiFe-LDHs is selectively reduced to the alloy state by n-butyllithium, whereas Fe is not. The different structural transformations of Ni and Fe during the treatment successfully produce an oxygen-defect-rich amorphous/crystalline electrocatalyst. Under optimal conditions, the treated NiFe-LDHs exhibit high OER activity with an overpotential of 223 mV at 10 mA cm-2 (68 mV lower than that of a commercial IrO2 electrocatalyst) and long-term stability. Notably, the n-butyllithium treatment can be applied to other electrocatalysts, such as CoFe-LDHs and IrO2 (treated IrO2 with an overpotential of 197 mV at 10 mA cm-2). This n-butyllithium reduction/partial oxidization treatment constitutes a novel top-down strategy for the controllable modification of metal oxide structures, with various energy-related applications.
Collapse
Affiliation(s)
- Xifan Chen
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Yameng Zhang
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Jia Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Junzhong Wang
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
10
|
Sun YY, Zhang XY, Tang J, Li X, Fu HQ, Xu HG, Mao F, Liu P, Yang HG. Amorphous Oxysulfide Reconstructed from Spinel NiCo 2 S 4 for Efficient Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207965. [PMID: 36965022 DOI: 10.1002/smll.202207965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The progress of effective and durable electrocatalysts for oxygen evolution reaction (OER) is urgent, which is essential to promote the overall efficiency of green hydrogen production. To improve the performance of spinel cobalt-based oxides, which serve as promising water oxidation electrocatalysts in alkaline electrolytes, most researches have been concentrated on cations modification. Here, an anionic regulation mechanism is employed to adopt sulfur(S) anion substitution to supplant NiCo2 O4 by NiCo2 S4 , which contributed to an impressive OER performance in alkali. It is revealed that the substitution of S constructs a sub-stable spinel structure that facilitates its reconstruction into active amorphous oxysulfide under OER conditions. More importantly, as the active phase in the actual reaction process, the hetero-anionic amorphous oxysulfide has an appropriately tuned electronic structure and efficient OER electrocatalytic activity. This work demonstrates a promising approach for achieving anion conditioning-based tunable structure reconstruction for robust and easy preparation spinel oxide OER electrocatalysts.
Collapse
Affiliation(s)
- Ying Ying Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Yu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianfang Tang
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Huai Qin Fu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Hao Guan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - PengFei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Liu G. Oxygen evolution reaction electrocatalysts for seawater splitting: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|