1
|
Zhao Y, Ou M, Liu J, Jiang J, Zhang D, Ke B, Wu Y, Chen Y, Jiang R, Hemmings HC, Zhu T, Zhou C. Astrocytes Modulate a Specific Paraventricular Thalamus→Prefrontal Cortex Projection to Enhance Consciousness Recovery from Anesthesia. J Neurosci 2024; 44:e1808232024. [PMID: 38926088 PMCID: PMC11340278 DOI: 10.1523/jneurosci.1808-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/30/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Current anesthetic theory is mostly based on neurons and/or neuronal circuits. A role for astrocytes also has been shown in promoting recovery from volatile anesthesia, while the exact modulatory mechanism and/or the molecular target in astrocytes is still unknown. In this study by animal models in male mice and electrophysiological recordings in vivo and in vitro, we found that activating astrocytes of the paraventricular thalamus (PVT) and/or knocking down PVT astrocytic Kir4.1 promoted the consciousness recovery from sevoflurane anesthesia. Single-cell RNA sequencing of the PVT reveals two distinct cellular subtypes of glutamatergic neurons: PVT GRM and PVT ChAT neurons. Patch-clamp recording results proved astrocytic Kir4.1-mediated modulation of sevoflurane on the PVT mainly worked on PVT ChAT neurons, which projected mainly to the mPFC. In summary, our findings support the novel conception that there is a specific PVT→prefrontal cortex projection involved in consciousness recovery from sevoflurane anesthesia, which is mediated by the inhibition of sevoflurane on PVT astrocytic Kir4.1 conductance.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bowen Ke
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yujie Wu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ruotian Jiang
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hugh C Hemmings
- Departments of Anesthesiology and Pharmacology, Weill Cornell Medicine, New York, New York 10065
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Cheng Zhou
- Research Institution of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Jia L, Yin J, Liu T, Qi W, Du T, Li Q, Ma K, Si J, Yin J, Li Y. Activation of Ventral Tegmental Area Dopaminergic Neurons Projecting to the Parabrachial Nucleus Promotes Emergence from Propofol Anesthesia in Male Rats. Neurochem Res 2024; 49:2060-2074. [PMID: 38814359 DOI: 10.1007/s11064-024-04169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.
Collapse
Affiliation(s)
- Lei Jia
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jieting Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tielong Liu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenqiang Qi
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tongyu Du
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Quntao Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Junqiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
3
|
Hu Y, Du W, Qi J, Luo H, Zhang Z, Luo M, Wang Y. Comparative brain-wide mapping of ketamine- and isoflurane-activated nuclei and functional networks in the mouse brain. eLife 2024; 12:RP88420. [PMID: 38512722 PMCID: PMC10957177 DOI: 10.7554/elife.88420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Ketamine (KET) and isoflurane (ISO) are two widely used general anesthetics, yet their distinct and shared neurophysiological mechanisms remain elusive. In this study, we conducted a comparative analysis of the effects of KET and ISO on c-Fos expression across the mouse brain, utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the responses of individual brain regions to each anesthetic. Our findings reveal that KET activates a wide range of brain regions, notably in the cortical and subcortical nuclei involved in sensory, motor, emotional, and reward processing, with the temporal association areas (TEa) as a strong hub, suggesting a top-down mechanism affecting consciousness by primarily targeting higher order cortical networks. In contrast, ISO predominantly influences brain regions in the hypothalamus, impacting neuroendocrine control, autonomic function, and homeostasis, with the locus coeruleus (LC) as a connector hub, indicating a bottom-up mechanism in anesthetic-induced unconsciousness. KET and ISO both activate brain areas involved in sensory processing, memory and cognition, reward and motivation, as well as autonomic and homeostatic control, highlighting their shared effects on various neural pathways. In conclusion, our results highlight the distinct but overlapping effects of KET and ISO, enriching our understanding of the mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Jiangtao Qi
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Li M, Li W, Liang S, Liao X, Gu M, Li H, Chen X, Liu H, Qin H, Xiao J. BNST GABAergic neurons modulate wakefulness over sleep and anesthesia. Commun Biol 2024; 7:339. [PMID: 38503808 PMCID: PMC10950862 DOI: 10.1038/s42003-024-06028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
The neural circuits underlying sleep-wakefulness and general anesthesia have not been fully investigated. The GABAergic neurons in the bed nucleus of the stria terminalis (BNST) play a critical role in stress and fear that relied on heightened arousal. Nevertheless, it remains unclear whether BNST GABAergic neurons are involved in the regulation of sleep-wakefulness and anesthesia. Here, using in vivo fiber photometry combined with electroencephalography, electromyography, and video recordings, we found that BNST GABAergic neurons exhibited arousal-state-dependent alterations, with high activities in both wakefulness and rapid-eye movement sleep, but suppressed during anesthesia. Optogenetic activation of these neurons could initiate and maintain wakefulness, and even induce arousal from anesthesia. However, chronic lesion of BNST GABAergic neurons altered spontaneous sleep-wakefulness architecture during the dark phase, but not induction and emergence from anesthesia. Furthermore, we also discovered that the BNST-ventral tegmental area pathway might participate in promoting wakefulness and reanimation from steady-state anesthesia. Collectively, our study explores new elements in neural circuit mechanisms underlying sleep-wakefulness and anesthesia, which may contribute to a more comprehensive understanding of consciousness and the development of innovative anesthetics.
Collapse
Affiliation(s)
- Mengyao Li
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Wen Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Miaoqing Gu
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaowei Chen
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Hongliang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
5
|
Adamantidis AR, de Lecea L. Sleep and the hypothalamus. Science 2023; 382:405-412. [PMID: 37883555 DOI: 10.1126/science.adh8285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.
Collapse
Affiliation(s)
- Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Luis de Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford, CA, USA
- Wu Tsai Neurosciences Institute Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Zhou C. Editorial: Neural circuits underlying general anesthetics mediated consciousness changes. Front Neural Circuits 2023; 17:1251970. [PMID: 37731745 PMCID: PMC10507362 DOI: 10.3389/fncir.2023.1251970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Kostin A, Alam MA, Saevskiy A, Yang C, Golshani P, Alam MN. Calcium Dynamics of the Ventrolateral Preoptic GABAergic Neurons during Spontaneous Sleep-Waking and in Response to Homeostatic Sleep Demands. Int J Mol Sci 2023; 24:8311. [PMID: 37176016 PMCID: PMC10179316 DOI: 10.3390/ijms24098311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The ventrolateral preoptic area (VLPO) contains GABAergic sleep-active neurons. However, the extent to which these neurons are involved in expressing spontaneous sleep and homeostatic sleep regulatory demands is not fully understood. We used calcium (Ca2+) imaging to characterize the activity dynamics of VLPO neurons, especially those expressing the vesicular GABA transporter (VGAT) across spontaneous sleep-waking and in response to homeostatic sleep demands. The VLPOs of wild-type and VGAT-Cre mice were transfected with GCaMP6, and the Ca2+ fluorescence of unidentified (UNID) and VGAT cells was recorded during spontaneous sleep-waking and 3 h of sleep deprivation (SD) followed by 1 h of recovery sleep. Although both VGAT and UNID neurons exhibited heterogeneous Ca2+ fluorescence across sleep-waking, the majority of VLPO neurons displayed increased activity during nonREM/REM (VGAT, 120/303; UNID, 39/106) and REM sleep (VGAT, 32/303; UNID, 19/106). Compared to the baseline waking, VLPO sleep-active neurons (n = 91) exhibited higher activity with increasing SD that remained elevated during the recovery period. These neurons also exhibited increased Ca2+ fluorescence during nonREM sleep, marked by increased slow-wave activity and REM sleep during recovery after SD. These findings support the notion that VLPO sleep-active neurons, including GABAergic neurons, are components of neuronal circuitry that mediate spontaneous sleep and homeostatic responses to sustained wakefulness.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (P.G.)
| | - Md. Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (P.G.)
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA
| | - Anton Saevskiy
- Scientific Research and Technology Center for Neurotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Chenyi Yang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, USA;
| | - Peyman Golshani
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (P.G.)
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Md. Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, Los Angeles, CA 91343, USA; (A.K.); (M.A.A.); (P.G.)
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|