1
|
Nelson BR, Kirkpatrick BE, Skillin NP, Di Caprio N, Lee JS, Hibbard LP, Hach GK, Khang A, White TJ, Burdick JA, Bowman CN, Anseth KS. Facile Physicochemical Reprogramming of PEG-Dithiolane Microgels. Adv Healthc Mater 2024; 13:e2302925. [PMID: 37984810 PMCID: PMC11102926 DOI: 10.1002/adhm.202302925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Granular biomaterials have found widespread applications in tissue engineering, in part because of their inherent porosity, tunable properties, injectability, and 3D printability. However, the assembly of granular hydrogels typically relies on spherical microparticles and more complex particle geometries have been limited in scope, often requiring templating of individual microgels by microfluidics or in-mold polymerization. Here, we use dithiolane-functionalized synthetic macromolecules to fabricate photopolymerized microgels via batch emulsion, and then harness the dynamic disulfide crosslinks to rearrange the network. Through unconfined compression between parallel plates in the presence of photoinitiated radicals, we transform the isotropic microgels are transformed into disks. Characterizing this process, we find that the areas of the microgel surface in contact with the compressive plates are flattened while the curvature of the uncompressed microgel boundaries increases. When cultured with C2C12 myoblasts, cells localize to regions of higher curvature on the disk-shaped microgel surfaces. This altered localization affects cell-driven construction of large supraparticle scaffold assemblies, with spherical particles assembling without specific junction structure while disk microgels assemble preferentially on their curved surfaces. These results represent a unique spatiotemporal process for rapid reprocessing of microgels into anisotropic shapes, providing new opportunities to study shape-driven mechanobiological cues during and after granular hydrogel assembly.
Collapse
Affiliation(s)
- Benjamin R Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nikolas Di Caprio
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joshua S Lee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Lea Pearl Hibbard
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Grace K Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jason A Burdick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
2
|
Skillin NP, Bauman GE, Kirkpatrick BE, McCracken JM, Park K, Vaia RA, Anseth KS, White TJ. Photothermal Actuation of Thick 3D-Printed Liquid Crystalline Elastomer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313745. [PMID: 38482935 DOI: 10.1002/adma.202313745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Liquid crystalline elastomers (LCEs) are stimuli-responsive materials that transduce an input energy into a mechanical response. LCE composites prepared with photothermal agents, such as nanoinclusions, are a means to realize wireless, remote, and local control of deformation with light. Amongst photothermal agents, gold nanorods (AuNRs) are highly efficient converters when the irradiation wavelength matches the longitudinal surface plasmon resonance (LSPR) of the AuNRs. However, AuNR aggregation broadens the LSPR which also reduces photothermal efficiency. Here, the surface chemistry of AuNRs is engineered via a well-controlled two-step ligand exchange with a monofunctional poly(ethylene glycol) (PEG) thiol that greatly improves the dispersion of AuNRs in LCEs. Accordingly, LCE-AuNR nanocomposites with very low PEG-AuNR content (0.01 wt%) prepared by 3D printing are shown to be highly efficient photothermal actuators with rapid response (>60% strain s-1) upon irradiation with near-infrared (NIR; 808 nm) light. Because of the excellent dispersion of PEG-AuNR within the LCE, unabsorbed NIR light transmits through the nanocomposites and can actuate a series of samples. Further, the dispersion also allows for the optical deformation of millimeter-thick 3D printed structures without sacrificing actuation speed. The realization of well-dispersed nanoinclusions to maximize the stimulus-response of LCEs can benefit functional implementation in soft robotics or medical devices.
Collapse
Affiliation(s)
- Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kyoungweon Park
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
- UES, Inc., Dayton, OH, 45433, USA
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
3
|
Rešetič A. Shape programming of liquid crystal elastomers. Commun Chem 2024; 7:56. [PMID: 38485773 PMCID: PMC10940691 DOI: 10.1038/s42004-024-01141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid crystal elastomers (LCEs) are shape-morphing materials that demonstrate reversible actuation when exposed to external stimuli, such as light or heat. The actuation's complexity depends heavily on the instilled liquid crystal alignment, programmed into the material using various shape-programming processes. As an unavoidable part of LCE synthesis, these also introduce geometrical and output restrictions that dictate the final applicability. Considering LCE's future implementation in real-life applications, it is reasonable to explore these limiting factors. This review offers a brief overview of current shape-programming methods in relation to the challenges of employing LCEs as soft, shape-memory components in future devices.
Collapse
Affiliation(s)
- Andraž Rešetič
- Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Xu Y, Zhang X, Song Z, Chen X, Huang Y, Wang J, Li B, Huang S, Li Q. In situ Light-Writable Orientation Control in Liquid Crystal Elastomer Film Enabled by Chalcones. Angew Chem Int Ed Engl 2024; 63:e202319698. [PMID: 38190301 DOI: 10.1002/anie.202319698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Liquid crystal elastomers (LCEs) are stimulus-responsive materials with intrinsic anisotropy. However, it is still challenging to in situ program the mesogen alignment to realize three-dimensional (3D) deformations with high-resolution patterned structures. This work presents a feasible strategy to program the anisotropy of LCEs by using chalcone mesogens that can undergo a photoinduced cycloaddition reaction under linear polarized light. It is shown that by controlling the polarization director and the irradiation region, patterned alignment distribution in a freestanding LCE film can be created, which leads to complex and reversible 3D shape-morphing behaviors. The work demonstrates an in situ light-writing method to achieve sophisticated topography changes in LCEs, which has potential applications in encryption, sensors, and beyond.
Collapse
Affiliation(s)
- Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, Kent, OH-44242, USA
| | - Zhenpeng Song
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yinliang Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinyu Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Bingxiang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH-44242, USA
| |
Collapse
|
5
|
Pranda PA, Hedegaard A, Kim H, Clapper J, Nelson E, Hines L, Hayward RC, White TJ. Directional Adhesion of Monodomain Liquid Crystalline Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6394-6402. [PMID: 38266384 DOI: 10.1021/acsami.3c16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Pressure-sensitive adhesives (PSAs) are widely employed in consumer goods, health care, and commercial industry. Anisotropic adhesion of PSAs is often desirable to enable high force capacity coupled with facile release and has typically been realized through the introduction of complex surface and/or bulk microstructures while also maintaining high surface conformability. Although effective, microstructure fabrication can add cost and complexity to adhesive fabrication. Here, we explore aligned liquid crystalline elastomers (LCEs) as directional adhesives. Aligned LCEs exhibit direction-dependent stiffness, dissipation, and nonlinear deformation under load. By varying the cross-link content, we study how the bulk mechanical properties of LCEs correlate to their peel strength and peel anisotropy. We demonstrate up to a 9-fold difference in peel force measured when the LCE is peeled parallel vs perpendicular to the alignment axis. Opportunities to spatially localize adhesion are presented in a monolithic LCE patterned with different director orientations.
Collapse
Affiliation(s)
- Paula A Pranda
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | | | - Hyunki Kim
- 3M Company, Saint Paul, Minnesota 55144, United States
| | - Jason Clapper
- 3M Company, Saint Paul, Minnesota 55144, United States
| | - Eric Nelson
- 3M Company, Saint Paul, Minnesota 55144, United States
| | - Lindsey Hines
- 3M Company, Saint Paul, Minnesota 55144, United States
| | - Ryan C Hayward
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Saeed MH, Choi MY, Kim K, Lee JH, Kim K, Kim D, Kim SU, Kim H, Ahn SK, Lan R, Na JH. Electrostatically Powered Multimode Liquid Crystalline Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56285-56292. [PMID: 37991738 DOI: 10.1021/acsami.3c13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Soft actuators based on liquid crystalline elastomers (LCEs) are captivating significant interest because of their unique properties combining the programmable liquid crystalline molecular order and elasticity of polymeric materials. For practical applications, the ability to perform multimodal shape changes in a single LCE actuator at a subsecond level is a bottleneck. Here, we fabricate a monodomain LCE powered by electrostatic force, which enables fast multidirectional bending, oscillation, rotation, and complex actuation with a high degree of freedom. By tuning the dielectric constant and resistivity in LCE gels, a complete cycle of oscillation and rotation only takes 0.1 s. In addition, monodomain actuators exhibit anisotropic actuation behaviors that promise a more complex deployment in a potential electromechanical system. The presented study will pave the way for electrostatically controllable isothermal manipulation for a fast and multimode soft actuator.
Collapse
Affiliation(s)
- Mohsin Hassan Saeed
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon-Young Choi
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kitae Kim
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Hyeong Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keumbee Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dowon Kim
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Suk-Kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ruochen Lan
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jun-Hee Na
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Li S, Song Z, Fan Y, Wei D, Liu Y. Four-Dimensional Printing of Temperature-Responsive Liquid Crystal Elastomers with Programmable Shape-Changing Behavior. Biomimetics (Basel) 2023; 8:biomimetics8020196. [PMID: 37218782 DOI: 10.3390/biomimetics8020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Liquid crystal elastomers (LCEs) are polymer networks that exhibit anisotropic liquid crystalline properties while maintaining the properties of elastomers, presenting reversible high-speed and large-scale actuation in response to external stimuli. Herein, we formulated a non-toxic, low-temperature liquid crystal (LC) ink for temperature-controlled direct ink writing 3D printing. The rheological properties of the LC ink were verified under different temperatures given the phase transition temperature of 63 °C measured by the DSC test. Afterwards, the effects of printing speed, printing temperature, and actuation temperature on the actuation strain of printed LCEs structures were investigated within adjustable ranges. In addition, it was demonstrated that the printing direction can modulate the LCEs to exhibit different actuation behaviors. Finally, by sequentially conforming structures and programming the printing parameters, it showed the deformation behavior of a variety of complex structures. By integrating with 4D printing and digital device architectures, this unique reversible deformation property will help LCEs presented here apply to mechanical actuators, smart surfaces, micro-robots, etc.
Collapse
Affiliation(s)
- Shuyi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Zhengyi Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Yuyan Fan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| |
Collapse
|
8
|
Hebner TS, McCracken JM, Bowman CN, White TJ. The Contribution of Oligomerization Reaction Chemistry to the Thermomechanical Properties of Surface-Aligned Liquid Crystalline Elastomers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tayler S. Hebner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Joselle M. McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|