1
|
Kong X, Zhu J, Xu Z, Geng Z. Fundamentals and Challenges of Ligand Modification in Heterogeneous Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202417562. [PMID: 39446379 DOI: 10.1002/anie.202417562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Indexed: 11/16/2024]
Abstract
The development of efficient catalytic materials in the energy field could promote the structural transformation from traditional fossil fuels to sustainable energy. In heterogeneous catalytic reactions, ligand modification is an effective way to regulate both electronic and steric structures of catalytic sites, thus paving a prospective avenue to design the interfacial structures of heterogeneous catalysts for energy conversion. Although great achievements have been obtained for the study and applications of heterogeneous ligand-modified catalysts, the systematical refinements of ligand modification strategies are still lacking. Here, we reviewed the ligand modification strategy from both the mechanistic and applicable scenarios by focusing on heterogeneous electrocatalysis. We elucidated the ligand-modified catalysts in detail from the perspectives of basic concepts, preparation, regulation of physicochemical properties of catalytic sites, and applications in different electrocatalysis. Notably, we bridged the electrocatalytic performance with the electronic/steric effects induced by ligand modification to gain intrinsic structure-performance relations. We also discussed the challenges and future perspectives of ligand modification strategies in heterogeneous catalysis.
Collapse
Affiliation(s)
- Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiangchen Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zifan Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Zhang P, Wang C, Zhang J, Hou R, Zhang S, Liu K, Silva SRP, Zhang P, Shao G. Developing High Energy Density Li-S Batteries via Pore-Structure Regulation of Porous Carbon Based Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410907. [PMID: 39711258 DOI: 10.1002/smll.202410907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Indexed: 12/24/2024]
Abstract
The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid-state products, reduce the Li2S film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium-sulfur (Li-S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density. In this work, the pore structure of carbon nanosheet-based electrocatalysts is precisely controlled by adjusting the content of a water-soluble potassium chloride template, allowing for in-depth investigation of the relationship between pore structure, electrolyte usage, and electrochemical performance in Li-S batteries. The molybdenum carbide-embedded carbon nanosheet (MoC-CNS) electrocatalyst, with an optimized pore structure, facilitates exceptional electrochemical performance under high sulfur loading and lean electrolyte conditions. Ultimately, the MoC-CNS-3-based Li-S battery achieved stable operation over 50 cycles under high sulfur loading (12 mg cm-2) and a low electrolyte-to-sulfur (E/S) ratio of 4 uL mg-1, delivering a high gravimetric energy density of 354.5 Wh kg-1. This work provides a viable strategy for developing high-performance Li-S batteries.
Collapse
Affiliation(s)
- Pengpeng Zhang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Chen Wang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Jingbo Zhang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Ruohan Hou
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Shijie Zhang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Kangli Liu
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - S Ravi P Silva
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Nanoelectronics Center, Advanced Technology Institute, University of Surrey, Guildford, 7XH, UK
| | - Peng Zhang
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| | - Guosheng Shao
- School of Materials science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhengzhou, 450001, China
| |
Collapse
|
3
|
Liang W, Xie M, Li D, Qin W, Dai C, Wang Y, Zhang H, Zhao B, Jin G, Sun Y, Jiang L. Plasmon-Promoted Interatomic Hot Carriers Regulation Enhanced Electrocatalytic Nitrogen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202409484. [PMID: 39218790 DOI: 10.1002/anie.202409484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Utilizing hot carriers for efficient plasmon-mediated chemical reactions (PMCRs) to convert solar energy into secondary energy is one of the most feasible solutions to the global environmental and energy crisis. Finding a plasmonic heterogeneous nanostructure with a more efficient and reasonable hot carrier transport path without affecting the intrinsic plasmonic properties is still a major challenge that urgently needs to be solved in this field. Herein, the mechanism by which plasmon-promoted interatomic hot electron redistribution on the surface of Au3Cu alloy nanoparticles promotes the electrocatalytic nitrogen reduction reaction (ENRR) is successfully clarified. The localized surface plasmon resonance (LSPR) effect can boost the transfer of plasmon hot electrons from Au atoms to Cu atoms, trigger the interatomic electron regulation of Au3Cu alloy nanoparticles, enhance the desorption of ammonia molecules, and increase the ammonia yield by approximately 93.9 %. This work provides an important reference for rationally designing and utilizing the LSPR effect to efficiently regulate the distribution and mechanism of plasmon hot carriers on the surface of heterogeneous alloy nanostructures.
Collapse
Affiliation(s)
- Wenkai Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
- Nonequilibrium Chemical Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Dong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Wei Qin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Chang Dai
- Innovation Centre for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Yawen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Bo Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Guangyao Jin
- Jinglan Advanced Material Co., Ltd., 214100, Wuxi, China
| | - Yinghui Sun
- Innovation Centre for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, 450000, Zhengzhou, P. R. China
| | - Lin Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| |
Collapse
|
4
|
Wang L, Zhang Y. Impact of Interfaces on the Performance of Covalent Organic Frameworks for Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408395. [PMID: 39558696 DOI: 10.1002/smll.202408395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The rise in global temperatures and environmental contamination resulting from traditional fossil fuel usage has prompted a search for alternative energy sources. Utilizing solar energy to drive the direct splitting of water for hydrogen production has emerged as a promising solution to these challenges. Covalent organic frameworks (COFs) are ordered, crystalline materials made up of organic molecules linked by covalent bonds, featuring permanent porosity and a wide range of structural topologies. COFs serve as suitable platforms for solar-driven water splitting to produce hydrogen, as their building blocks can be tailored to possess adjustable band gaps, charge separation capabilities, porosity, wettability, and chemical stability. Here, the impact of the interface in the context of the photocatalytic reaction is focused and propose strategies to enhance the hydrogen production performance of COFs photocatalysis. In particular, how hybrid photocatalytic interfaces affect photocatalytic performance is focused.
Collapse
Affiliation(s)
- Lin Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Zhong T, Huang W, Yao Z, Long X, Qu W, Zhao H, Tian S, Shu D, He C. Engineering of Graphitic Carbon Nitride (g-C 3N 4) Based Photocatalysts for Atmospheric Protection: Modification Strategies, Recent Progress, and Application Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404696. [PMID: 39155427 DOI: 10.1002/smll.202404696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Indexed: 08/20/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a prominent photocatalyst that has attracted substantial interest in the field of photocatalytic environmental remediation due to the low cost of fabrication, robust chemical structure, adaptable and tunable energy bandgaps, superior photoelectrochemical properties, cost-effective feedstocks, and distinctive framework. Nonetheless, the practical application of bulk g-C3N4 in the photocatalysis field is limited by the fast recombination of photogenerated e--h+ pairs, insufficient surface-active sites, and restricted redox capacity. Consequently, a great deal of research has been devoted to solving these scientific challenges for large-scale applications. This review concisely presents the latest advancements in g-C3N4-based photocatalyst modification strategies, and offers a comprehensive analysis of the benefits and preparation techniques for each strategy. It aims to articulate the complex relationship between theory, microstructure, and activities of g-C3N4-based photocatalysts for atmospheric protection. Finally, both the challenges and opportunities for the development of g-C3N4-based photocatalysts are highlighted. It is highly believed that this special review will provide new insight into the synthesis, modification, and broadening of g-C3N4-based photocatalysts for atmospheric protection.
Collapse
Affiliation(s)
- Tao Zhong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenbin Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhangnan Yao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xianhu Long
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Qu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
6
|
Lan J, Qu S, Ye X, Zheng Y, Ma M, Guo S, Huang S, Li S, Kang J. Core-Shell Semiconductor-Graphene Nanoarchitectures for Efficient Photocatalysis: State of the Art and Perspectives. NANO-MICRO LETTERS 2024; 16:280. [PMID: 39249597 PMCID: PMC11383916 DOI: 10.1007/s40820-024-01503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation, but generally suffers from the serious drawbacks on light absorption, charge generation and transport, and structural stability that limit the performance. The core-shell semiconductor-graphene (CSSG) nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties. This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance. It starts with the classification of the CSSG nanoarchitectures by the dimensionality. Then, the construction methods under internal and external driving forces were introduced and compared with each other. Afterward, the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed, with a focus on their role in photocatalysis. It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application. By harnessing the synergistic capabilities of the CSSG architectures, we aim to address pressing environmental and energy challenges and drive scientific progress in these fields.
Collapse
Affiliation(s)
- Jinshen Lan
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shanzhi Qu
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xiaofang Ye
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yifan Zheng
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Mengwei Ma
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shengshi Guo
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shengli Huang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Shuping Li
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Junyong Kang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|
7
|
Hu Z, Yang J, Tang L, Jiang H, Zhu Y, Li R, Liu C, Shen J. New Morphology Modifier Enables the Preparation of Ultra-Long Platinum Nanowires Excluding Mo Component for Efficient Oxygen Reduction Reaction Performance. SMALL METHODS 2024:e2401138. [PMID: 39246276 DOI: 10.1002/smtd.202401138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Indexed: 09/10/2024]
Abstract
The structural tailoring of Pt-based catalysts into 1D nanowires for oxygen reduction reactions (ORR) has been a focus of research. Mo(CO)6 is commonly used as a morphological modifier to form nanowires, but it is found that it inevitably leads to Mo doping. This doping introduces unique electrochemical signals not seen in other Pt-based catalysts, which can directly reflect the stability of the catalyst. Through experiments, it is demonstrated that Mo doping is detrimental to ORR performance, and theoretical calculations have shown that Mo sites that are inherently inactive also poison the ORR activity of the surrounding Pt. Therefore, a novel gas-assisted technique is proposed to replace Mo(CO)6 with CO, which forms ultrafine nanowires with an order of magnitude increase in length, ruling out the effect of Mo. The catalyst performs at 1.24 A mgPt -1, 7.45 times greater than Pt/C, demonstrating significant ORR mass activity, and a substantial improvement in stability. The proton exchange membrane fuel cell using this catalyst provides a higher power density (0.7 W cm-2). This study presents a new method for the preparation of ultra-long nanowires, which opens up new avenues for future practical applications of low-Pt catalysts in PEMFC.
Collapse
Affiliation(s)
- Zhiwei Hu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiajia Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibo Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruijiu Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cui Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianhua Shen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Zhang P, Cai M, Wei Y, Zhang J, Li K, Silva SRP, Shao G, Zhang P. Photo-Assisted Rechargeable Metal Batteries: Principles, Progress, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402448. [PMID: 38877647 PMCID: PMC11321620 DOI: 10.1002/advs.202402448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Indexed: 06/16/2024]
Abstract
The utilization of diverse energy storage devices is imperative in the contemporary society. Taking advantage of solar power, a significant environmentally friendly and sustainable energy resource, holds great appeal for future storage of energy because it can solve the dilemma of fossil energy depletion and the resulting environmental problems once and for all. Recently, photo-assisted energy storage devices, especially photo-assisted rechargeable metal batteries, are rapidly developed owing to the ability to efficiently convert and store solar energy and the simple configuration, as well as the fact that conventional Li/Zn-ion batteries are widely commercialized. Considering many puzzles arising from the rapid development of photo-assisted rechargeable metal batteries, this review commences by introducing the fundamental concepts of batteries and photo-electrochemistry, followed by an exploration of the current advancements in photo-assisted rechargeable metal batteries. Specifically, it delves into the elucidation of device components, operating principles, types, and practical applications. Furthermore, this paper categorizes, specifies, and summarizes several detailed examples of photo-assisted energy storage devices. Lastly, it addresses the challenges and bottlenecks faced by these energy storage systems while providing future perspectives to facilitate their transition from laboratory research to industrial implementation.
Collapse
Affiliation(s)
- Pengpeng Zhang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
- State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)Zhengzhou450001China
| | - Meng Cai
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
- State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)Zhengzhou450001China
| | - Yixin Wei
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
- State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)Zhengzhou450001China
| | - Jingbo Zhang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
- State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)Zhengzhou450001China
| | - Kaizhen Li
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
- State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)Zhengzhou450001China
| | - Sembukuttiarachilage Ravi Pradip Silva
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
- State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Nanoelectronics CenterAdvanced Technology InstituteUniversity of SurreyGuildfordGU2 7XHUK
| | - Guosheng Shao
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
- State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)Zhengzhou450001China
| | - Peng Zhang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
- State Centre for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)Zhengzhou450001China
| |
Collapse
|
9
|
Pan J, Wang D, Wu D, Cao J, Fang X, Zhao C, Zeng Z, Zhang B, Liu D, Liu S, Liu G, Jiao S, Xu Z, Zhao L, Wang J. Rational Design of Three Dimensional Hollow Heterojunctions for Efficient Photocatalytic Hydrogen Evolution Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309293. [PMID: 38258489 PMCID: PMC10987164 DOI: 10.1002/advs.202309293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/24/2024]
Abstract
The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g-1 h-1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g-1 h-1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.
Collapse
Affiliation(s)
- Jingwen Pan
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Dongbo Wang
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Donghai Wu
- Henan Key Laboratory of Nanocomposites and ApplicationsHuanghe Science and Technology CollegeInstitute of Nanostructured Functional MaterialsZhengzhou450006China
| | - Jiamu Cao
- School of AstronauticsHarbin Institute of TechnologyHarbin150001China
| | - Xuan Fang
- State Key Lab High Power Semicond LasersChangchun University Science and Technology, Sch SciChangchun130022China
| | - Chenchen Zhao
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Zhi Zeng
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Bingke Zhang
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Donghao Liu
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Sihang Liu
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Gang Liu
- Center for High Pressure Science and Technology Advanced ResearchShanghai201203China
| | - Shujie Jiao
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Zhikun Xu
- Guangdong University of Petrochemical TechnologyMaoming525000China
| | - Liancheng Zhao
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jinzhong Wang
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
10
|
He H, Jian X, Zen T, Feng B, Hu Y, Yuan Z, Zhao Z, Gao X, Lv L, Cao Z. Sulfur defect induced Cd 0.3Zn 0.7S in-situ anchoring on metal organic framework for enhanced photothermal catalytic CO 2 reduction to prepare proportionally adjustable syngas. J Colloid Interface Sci 2024; 653:687-696. [PMID: 37741176 DOI: 10.1016/j.jcis.2023.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
The rapid recombination of interfacial charges is considered to be the main obstacle limiting the photocatalytic CO2 reduction. Thus, it is a challenge to research an accurate and stable charge transfer control strategy. MIL-53 (Al)-S/Cd0.3Zn0.7S (MAS/CZS-0.3) photocatalysts with chemically bonded interfaces were constructed by in-situ electrostatic assembly of sulfur defect Cd0.3Zn0.7S (CZS-0.3) on the surface of MIL-53 (Al) (MAW), which enhanced interfacial coupling and accelerated electron transfer efficiency. An adjustable proportion of syngas (H2/CO) was prepared by photothermal catalytic CO2 reduction at micro-interface. and the optimal yield of CO (66.10 μmol∙g-1∙h-1) and H2 (71.0 μmol∙g-1∙h-1) was realized by the MAS/CZS-0.3 photocatalyst. The improved activity was due to the photogenerated electrons migrated from CZS-0.3 to the adsorption active sites of MAS, which strengthened the adsorption and activation of CO2 on MAS. The photothermal catalytic CO2 reduction to CO follows the pathway of CO2→*COOH → CO and CO2→*HCO3-→CO. This work provided a reference for the research, characterization, and application of in-situ anchoring of metal organic frameworks in photothermal catalytic CO2 reduction, and provided a green path for the supply of Syngas in industry.
Collapse
Affiliation(s)
- Hongbin He
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xuan Jian
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Tianxu Zen
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Bingbing Feng
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yanan Hu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhongqiang Yuan
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zizhen Zhao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiaoming Gao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Lei Lv
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhenheng Cao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
11
|
Zhang F, Li Y, Ding B, Shao G, Li N, Zhang P. Electrospinning Photocatalysis Meet In Situ Irradiated XPS: Recent Mechanisms Advances and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303867. [PMID: 37649219 DOI: 10.1002/smll.202303867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Producing solar fuels over photocatalysts under light irradiation is a considerable way to alleviate energy crises and environmental pollution. To develop the yields of solar fuels, photocatalysts with broad light absorption, fast charge carrier migration, and abundant reaction sites need to be designed. Electrospun 1D nanofibers with large specific areas and high porosity have been widely used in the efficient production of solar fuels. Nevertheless, it is challenging to do in-depth mechanism research on electrospun nanofiber-based photocatalysts since there are multiple charge transfer routes and various reaction sites in these systems. Here, the basic principles of electrospinning and photocatalysis are systemically discussed. Then, the different roles of electrospun nanofibers played in recent research to boost photocatalytic efficiency are highlighted. It is noteworthy that the working principles and main advantages of in situ irradiated photoelectron spectroscopy (ISI-XPS), a new technique to investigate migration routes of charge carriers and identify active sites in electrospun nanofibers based photocatalysts, are summarized for the first time. At last, a brief summary on the future orientation of photocatalysts based on electrospun nanofibers as well as the perspectives on the development of the ISI-XPS technique are also provided.
Collapse
Affiliation(s)
- Fei Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yukun Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textile, Donghua University, Shanghai, 201620, China
| | - Guosheng Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Lu S, Li J, Shen W, Wang Z, Ma Y, Su X, Lu Y, Li L, Chen Z. Two-Dimensional Atomically Thin Titanium Nitride via Topochemical Conversion. ACS NANO 2023. [PMID: 37991834 DOI: 10.1021/acsnano.3c09930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Titanium nitride as a typical transition metal nitride (TMN) has attracted increasing interest for its fascinating characteristics and widespread applications. However, the synthesis of two-dimensional (2D) atomically thin titanium nitride is still challenging which hinders its further research in electronic and optoelectronic fields. Here, 2D titanium nitride with a large area was prepared via in situ topochemical conversion of the titanate monolayer. The titanium nitride reveals a thickness-dependent metallic-to-semiconducting transition, where the atomically thin titanium nitride with a thickness of ∼1 nm exhibits an n-type semiconducting behavior and a highly sensitive photoresponse and displays photoswitchable resistance by repeated light irradiation. First-principles calculations confirm that the chemisorbed oxygen on the surface of the titanium nitride nanosheet depletes its electrons, while the light irradiation induced desorption of oxygen leads to increased electron doping and hence the conductance of titanium nitride. These results may allow the scalable synthesis of ultrathin TMNs and facilitate their fundamental physics research and next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Shan Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wanping Shen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zichen Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yecheng Ma
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyu Su
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yunhao Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zongping Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Wu L, Li M, Zhou B, Xu S, Yuan L, Wei J, Wang J, Zou S, Xie W, Qiu Y, Rao M, Chen G, Ding L, Yan K. Reversible Stacking of 2D ZnIn 2 S 4 Atomic Layers for Enhanced Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303821. [PMID: 37328439 DOI: 10.1002/smll.202303821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Indexed: 06/18/2023]
Abstract
It is technically challenging to reversibly tune the layer number of 2D materials in the solution. Herein, a facile concentration modulation strategy is demonstrated to reversibly tailor the aggregation state of 2D ZnIn2 S4 (ZIS) atomic layers, and they are implemented for effective photocatalytic hydrogen (H2 ) evolution. By adjusting the colloidal concentration of ZIS (ZIS-X, X = 0.09, 0.25, or 3.0 mg mL-1 ), ZIS atomic layers exhibit the significant aggregation of (006) facet stacking in the solution, leading to the bandgap shift from 3.21 to 2.66 eV. The colloidal stacked layers are further assembled into hollow microsphere after freeze-drying the solution into solid powders, which can be redispersed into colloidal solution with reversibility. The photocatalytic hydrogen evolution of ZIS-X colloids is evaluated, and the slightly aggregated ZIS-0.25 displays the enhanced photocatalytic H2 evolution rates (1.11 µmol m-2 h-1 ). The charge-transfer/recombination dynamics are characterized by time-resolved photoluminescence (TRPL) spectroscopy, and ZIS-0.25 displays the longest lifetime (5.55 µs), consistent with the best photocatalytic performance. This work provides a facile, consecutive, and reversible strategy for regulating the photo-electrochemical properties of 2D ZIS, which is beneficial for efficient solar energy conversion.
Collapse
Affiliation(s)
- Liqin Wu
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Mingjie Li
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Biao Zhou
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Shuang Xu
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Ligang Yuan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Jianwu Wei
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Jiarong Wang
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Shibing Zou
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute of Co., Ltd., Guangzhou, 510630, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Liming Ding
- Center of Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Keyou Yan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| |
Collapse
|
14
|
Xi Q, Xie F, Liu J, Zhang X, Wang J, Wang Y, Wang Y, Li H, Yu Z, Sun Z, Jian X, Gao X, Ren J, Fan C, Li R. In Situ Formation ZnIn 2 S 4 /Mo 2 TiC 2 Schottky Junction for Accelerating Photocatalytic Hydrogen Evolution Kinetics: Manipulation of Local Coordination and Electronic Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300717. [PMID: 36919813 DOI: 10.1002/smll.202300717] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Indexed: 06/15/2023]
Abstract
Regulating electronic structures of the active site by manipulating the local coordination is one of the advantageous means to improve photocatalytic hydrogen evolution (PHE) kinetics. Herein, the ZnIn2 S4 /Mo2 TiC2 Schottky junctions are designed to be constructed through the interfacial local coordination of In3+ with the electronegative O terminal group on Mo2 TiC2 based on the different work functions. Kelvin probe force microscopy and charge density difference reveal that an electronic unidirectional transport channel across the Schottky interface from ZnIn2 S4 to Mo2 TiC2 is established by the formed local nucleophilic/electrophilic region. The increased local electron density of Mo2 TiC2 inhibits the backflow of electrons, boosts the charge transfer and separation, and optimizes the hydrogen adsorption energy. Therefore, the ZnIn2 S4 /Mo2 TiC2 photocatalyst exhibits a superior PHE rate of 3.12 mmol g-1 h-1 under visible light, reaching 3.03 times that of the pristine ZnIn2 S4 . This work provides some insights and inspiration for preparing MXene-based Schottky catalysts to accelerate PHE kinetics.
Collapse
Affiliation(s)
- Qing Xi
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Fangxia Xie
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jianxin Liu
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaochao Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jiancheng Wang
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yawen Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yunfang Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Houfen Li
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zhuobin Yu
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zijun Sun
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xuan Jian
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Xiaoming Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Jun Ren
- Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Caimei Fan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Rui Li
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
15
|
Zhang P, Zhao Y, Li Y, Li N, Silva SRP, Shao G, Zhang P. Revealing the Selective Bifunctional Electrocatalytic Sites via In Situ Irradiated X-Ray Photoelectron Spectroscopy for Lithium-Sulfur Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206786. [PMID: 36646512 PMCID: PMC10015878 DOI: 10.1002/advs.202206786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Indexed: 06/15/2023]
Abstract
The electrocatalysts are widely applied in lithium-sulfur (Li-S) batteries to selectively accelerate the redox kinetics behavior of Li2 S, in which bifunctional active sites are established, thereby improving the electrochemical performance of the battery. Considering that the Li-S battery is a complex closed "black box" system, the internal redox reaction routes and active sites cannot be directly observed and monitored especially due to the distribution of potential active-site structures and their dynamic reconstruction. Empirical evidence demonstrates that traditional electrochemical test methods and theoretical calculations only probe the net result of multi-factors on an average and whole scale. Herein, based on the amorphous TiO2- x @Ni selective bifunctional model catalyst, these limitations are overcome by developing a system that couples the light field and in situ irradiated X-ray photoelectron spectroscopy to synergistically convert the "black box" battery into a "see-through" battery for direct observation of the charge transportation, thus revealing that amorphous TiO2- x and Ni nanoparticle as the oxidation and reduction sites selectively promote the decomposition and nucleation of Li2 S, respectively. This work provides a universal method to achieve a deeper mechanistic understanding of bidirectional sulfur electrochemistry.
Collapse
Affiliation(s)
- Pengpeng Zhang
- State Centre for International Cooperation on Designer Low‐Carbon and Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI) ZhengzhouZhengzhou450001China
| | - Yige Zhao
- State Centre for International Cooperation on Designer Low‐Carbon and Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
| | - Yukun Li
- State Centre for International Cooperation on Designer Low‐Carbon and Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
| | - Neng Li
- State Key Laboratory of Silicate Materials for ArchitectureWuhan University of TechnologyWuhan430000China
| | - S. Ravi P. Silva
- State Centre for International Cooperation on Designer Low‐Carbon and Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI) ZhengzhouZhengzhou450001China
- Nanoelectronics CenterAdvanced Technology InstituteUniversity of SurreyGuildfordGU27XHUK
| | - Guosheng Shao
- State Centre for International Cooperation on Designer Low‐Carbon and Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI) ZhengzhouZhengzhou450001China
| | - Peng Zhang
- State Centre for International Cooperation on Designer Low‐Carbon and Environmental Materials (CDLCEM)Zhengzhou University100 Kexue AvenueZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI) ZhengzhouZhengzhou450001China
| |
Collapse
|
16
|
Pham VN, Lee S, Lee H, Kim HS. Revealing Photocatalytic Performance of Zn xCd 1-xS Nanoparticles Depending on the Irradiation Wavelength. Inorg Chem 2023; 62:3703-3711. [PMID: 36795758 DOI: 10.1021/acs.inorgchem.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Photocatalysts are useful for various applications, including the conservation and storage of energy, wastewater treatment, air purification, semiconductors, and production of high-value-added products. Herein, ZnxCd1-xS nanoparticle (NP) photocatalysts with different concentrations of Zn2+ ions (x = 0.0, 0.3, 0.5, or 0.7) were successfully synthesized. The photocatalytic activities of ZnxCd1-xS NPs varied with the irradiation wavelength. X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible spectroscopy were used to characterize the surface morphology and electronic properties of the ZnxCd1-xS NPs. In addition, in situ X-ray photoelectron spectroscopy was performed to investigate the effect of the concentration of Zn2+ ions on the irradiation wavelength for photocatalytic activity. Furthermore, wavelength-dependent photocatalytic degradation (PCD) activity of the ZnxCd1-xS NPs was investigated using biomass-derived 2,5-hydroxymethylfurfural (HMF). We observed that the selective oxidation of HMF using ZnxCd1-xS NPs resulted in the formation of 2,5-furandicarboxylic acid via 5-hydroxymethyl-2-furancarboxylic acid or 2,5-diformylfuran. The selective oxidation of HMF was dependent on the irradiation wavelength for PCD. Moreover, the irradiation wavelength for the PCD depended on the concentration of Zn2+ ions in the ZnxCd1-xS NPs.
Collapse
Affiliation(s)
- Vy Ngoc Pham
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sangyeob Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyun Sung Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
17
|
Liu T, Wang T, Ding C, Wang M, Wang W, Shen H, Zhang J. One-pot synthesis of carbon coated Cu-doped ZnIn2S4 core-shell structure for boosted photocatalytic H2-evolution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|