1
|
Neefs I, De Meulenaere N, Vanpoucke T, Vandenhoeck J, Peeters D, Peeters M, Van Camp G, Op de Beeck K. Simultaneous detection of eight cancer types using a multiplex droplet digital PCR assay. Mol Oncol 2025; 19:188-203. [PMID: 39239847 PMCID: PMC11705734 DOI: 10.1002/1878-0261.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
DNA methylation biomarkers have emerged as promising tools for cancer detection. Common methylation patterns across tumor types allow multi-cancer detection. Droplet digital PCR (ddPCR) has gained considerable attention for methylation detection. However, multi-cancer detection using multiple targets in ddPCR has never been performed before. Therefore, we developed a multiplex ddPCR assay for multi-cancer detection. Based on previous data analyses using The Cancer Genome Atlas (TCGA), we selected differentially methylated targets for eight frequent tumor types (lung, breast, colorectal, prostate, pancreatic, head and neck, liver, and esophageal cancer). Three targets were validated using ddPCR in 103 tumor and 109 normal adjacent fresh frozen samples. Two distinct ddPCR assays were successfully developed. Output data from both assays is combined to obtain a read-out from the three targets together. Our overall ddPCR assay has a cross-validated area under the curve (cvAUC) of 0.948. Performance between distinct cancer types varies, with sensitivities ranging from 53.8% to 100% and specificities ranging from 80% to 100%. Compared to previously published single-target parameters, we show that combining targets can drastically increase sensitivity and specificity, while lowering DNA input. In conclusion, we are the first to report a multi-cancer methylation ddPCR assay, which allows for highly accurate tumor predictions.
Collapse
Affiliation(s)
- Isabelle Neefs
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Nele De Meulenaere
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Thomas Vanpoucke
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Janah Vandenhoeck
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Dieter Peeters
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Marc Peeters
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Guy Van Camp
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Ken Op de Beeck
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| |
Collapse
|
2
|
Wang Y, Duan Y, Guo D, Lv H, Li Q, Liu X, Qiao N, Meng H, Zhang X, Lan L, Liu X, Liu X. Value of circulating tumor cell assisting low-dose computed tomography in screening pulmonary nodules based on existing liquid biopsy techniques: a systematic review with meta-analysis and trial sequential analysis. Clin Transl Oncol 2024; 26:3252-3263. [PMID: 38869739 DOI: 10.1007/s12094-024-03556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVE This study aims to assess the diagnostic utility of circulating tumor cells (CTCs) in conjunction with low-dose computed tomography (LDCT) for differentiating between benign and malignant pulmonary nodules and to substantiate the foundation for their integration into clinical practice. METHODS A systematic literature review was performed independently by two researchers utilizing databases including PubMed, Web of Science, The Cochrane Library, Embase, and Medline, to collate studies up to September 15, 2023, that investigated the application of CTCs in diagnosing pulmonary nodules. A meta-analysis was executed employing Stata 15.0 and Revman 5.4 to calculate the pooled sensitivity, specificity, positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR), and the area under the receiver operating characteristic curve (AUC). Additionally, trial sequential analysis was conducted using dedicated TSA software. RESULTS The selection criteria identified 16 studies, encompassing a total of 3409 patients. The meta-analysis revealed that CTCs achieved a pooled sensitivity of 0.84 (95% CI 0.80 to 0.87), specificity of 0.80 (95% CI 0.73 to 0.86), PLR of 4.23 (95% CI 3.12 to 5.72), NLR of 0.20 (95% CI 0.16 to 0.25), DOR of 20.92 (95% CI 13.52 to 32.36), and AUC of 0.89 (95% CI 0.86 to 0.93). CONCLUSIONS Circulating tumor cells demonstrate substantial diagnostic accuracy in distinguishing benign from malignant pulmonary nodules. The incorporation of CTCs into the diagnostic protocol can significantly augment the diagnostic efficacy of LDCT in screening for malignant lung diseases.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Yuqing Duan
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Dingjie Guo
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Hongbo Lv
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Qiong Li
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Na Qiao
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Hengyu Meng
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Linwei Lan
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xiumin Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Xin Liu
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
3
|
Zhao Y, O'Keefe CM, Hu J, Allan CM, Cui W, Lei H, Chiu A, Hsieh K, Joyce SC, Herman JG, Pisanic TR, Wang TH. Multiplex digital profiling of DNA methylation heterogeneity for sensitive and cost-effective cancer detection in low-volume liquid biopsies. SCIENCE ADVANCES 2024; 10:eadp1704. [PMID: 39576863 PMCID: PMC11584010 DOI: 10.1126/sciadv.adp1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Molecular alterations in cancerous tissues exhibit intercellular genetic and epigenetic heterogeneity, complicating the performance of diagnostic assays, particularly for early cancer detection. Conventional liquid biopsy methods have limited sensitivity and/or ability to assess epigenetic heterogeneity of rare epiallelic variants cost-effectively. We report an approach, named REM-DREAMing (Ratiometric-Encoded Multiplex Discrimination of Rare EpiAlleles by Melt), which leverages a digital microfluidic platform that incorporates a ratiometric fluorescence multiplex detection scheme and precise digital high-resolution melt analysis to enable low-cost, parallelized analysis of heterogeneous methylation patterns on a molecule-by-molecule basis for the detection of cancer in liquid biopsies. We applied the platform to simultaneously assess intermolecular epigenetic heterogeneity in five methylation biomarkers for improved, blood-based screening for early-stage non-small cell lung cancer. In a cohort of 48 low-volume liquid biopsy specimens from patients with indeterminant pulmonary nodules, we show that assessment of intermolecular methylation density distributions can notably improve the performance of multigene methylation biomarker panels for the early detection of cancer.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christine M O'Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiumei Hu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Conor M Allan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Weiwen Cui
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hanran Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Allyson Chiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sonali C Joyce
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - James G Herman
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Thomas R Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Chen C, Chen S, Fu Y, Wei Y, Xie L, Chen M. Electrochemical sensing technology based on a ligation-initiated LAMP-assisted CRISPR/Cas12a system for high-specificity detection of EGFR E746-A750 deletion mutation. Biosens Bioelectron 2024; 263:116635. [PMID: 39116629 DOI: 10.1016/j.bios.2024.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Epidermal growth factor receptor (EGFR) mutation status is pivotal in predicting the efficacy of tyrosine kinase inhibitor treatments against tumors. Among EGFR mutations, the E746-A750 deletion is particularly common and accurately quantifying it can guide targeted therapies. This study introduces a novel visual sensing technology using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system guided by ligation-initiated loop-mediated isothermal amplification (LAMP) to detect the del E746-A750 mutation in EGFR. Conventional LAMP primers were simplified by designing a pair of target-specific stem-loop DNA probes, enabling selective amplification of the target DNA. The CRISPR/Cas12a system was employed to identify the target nucleic acid and activate Cas12a trans-cleavage activity, thereby enhancing the specificity of the assay. Furthermore, the biosensor utilized high-performance nanomaterials such as triangular gold nanoparticles and graphdiyne, known for their large specific surface area, to enhance sensitivity effectively as a sensing platform. The proposed biosensor demonstrated outstanding specificity, achieving a low detection limit of 17 fM (S/N = 3). Consequently, this innovative strategy not only expands the application scope of CRISPR/Cas12a technology but also introduces a promising approach for clinical diagnostics in modern medicine.
Collapse
Affiliation(s)
- Cizhi Chen
- Clinical Laboratory, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Siyu Chen
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Yang Fu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Yuxin Wei
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Linzhi Xie
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Mei Chen
- Clinical Laboratory, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China.
| |
Collapse
|
5
|
Maffeo D, Rina A, Serio VB, Markou A, Powrózek T, Constâncio V, Nunes SP, Jerónimo C, Calvo A, Mari F, Frullanti E, Rosati D, Palmieri M. The Evidence Base for Circulating Tumor DNA-Methylation in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3641. [PMID: 39518079 PMCID: PMC11544801 DOI: 10.3390/cancers16213641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Non-Small Cell Lung Cancer (NSCLC) remains a challenging disease to manage with effectiveness. Early detection and precise monitoring are crucial for improving patient outcomes. Circulating tumor DNA (ctDNA) offers a non-invasive cancer detection and monitoring method. Emerging biomarkers, such as ctDNA methylation, have shown promise in enhancing diagnostic accuracy and prognostic assessment in NSCLC. In this review, we examined the current evidence regarding ctDNA methylation's role in NSCLC detection through a systematic review of the existing literature and meta-analysis. Methods: We systematically searched PubMed, Medline, Embase, and Web of Science databases up to 26 June 2024 for studies on the role of ctDNA methylation analysis in NSCLC patients. We included studies from 2010 to 2024 on NSCLC patients. We excluded case reports, non-English articles, studies on cell lines or artificial samples, those without cfDNA detection, prognostic studies, and studies with non-extractable data or mixed cancer types. Funnel plots were visually examined for potential publication bias, with a p value < 0.05 indicating bias. Meta-analysis was conducted using R packages (meta, forestplot, and mada). Combined sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), positive and negative predictive values, diagnostic odds ratio (DOR), and 95% confidence intervals (95% CI) were calculated. A summary receiver operating characteristic curve (SROC) and area under the curve (AUC) with related Standard Error (SE) were used to evaluate the overall diagnostic performance. Additionally, RASSF1A, APC, SOX17, SEPT9, and RARβ2 were analyzed, since their methylation was assessed in two or more studies. Results: From 38 candidate papers, we finally identified 12 studies, including 472 NSCLC patients. The pooled sensitivity was 0.62 (0.47-0.77) and the specificity was 0.90 (0.85-0.94). The diagnostic odds ratio was 15.6 (95% CI 9.36-26.09) and the area under the curve was 0.249 (SE = 0.138). The positive and negative predictive values were 5.38 (95% CI 3.89-7.44) and 0.34 (95% CI 0.22-0.54), respectively. For single genes, the specificity reached 0.83~0.96, except for RARβ2, but the sensitivity was relatively low for each gene. Significant heterogeneity across the included studies, the potential publication bias for specificity (p = 0.0231), and the need to validate the clinical utility of ctDNA methylation for monitoring treatment response and predicting outcomes in NSCLC patients represent the main limitations of this study. Conclusions: These results provide evidence of the significant potential of ctDNA methylation as a valuable biomarker for improving the diagnosis of NSCLC, advocating for its integration into clinical practice to enhance patient management.
Collapse
Affiliation(s)
- Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (D.M.); (A.R.); (V.B.S.); (D.R.); (M.P.)
- Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (D.M.); (A.R.); (V.B.S.); (D.R.); (M.P.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Dipartimento di Terapie cellulari, Ematologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (D.M.); (A.R.); (V.B.S.); (D.R.); (M.P.)
- Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Athina Markou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Tomasz Powrózek
- Department of Human Physiology, University of Lublin, 20080 Lublin, Poland;
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (C.J.)
| | - Sandra P. Nunes
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (C.J.)
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (C.J.)
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, 4099-002 Porto, Portugal
| | - Alfonso Calvo
- Program in Solid Tumors, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), Instituto de Investigación Sanitaria de Navarra (IDISNA), Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain;
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Dipartimento di Terapie cellulari, Ematologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (D.M.); (A.R.); (V.B.S.); (D.R.); (M.P.)
- Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (D.M.); (A.R.); (V.B.S.); (D.R.); (M.P.)
- Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (D.M.); (A.R.); (V.B.S.); (D.R.); (M.P.)
- Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
6
|
Huang FF, Di XF, Bai MH. Analysis of urine cell-free DNA in bladder cancer diagnosis by emerging bioactive technologies and materials. Front Bioeng Biotechnol 2024; 12:1458362. [PMID: 39295845 PMCID: PMC11408225 DOI: 10.3389/fbioe.2024.1458362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Urinary cell-free DNA (UcfDNA) is gaining recognition as an important biomarker for diagnosing bladder cancer. UcfDNA contains tumor derived DNA sequences, making it a viable candidate for non-invasive early detection, diagnosis, and surveillance of bladder cancer. The quantification and qualification of UcfDNA have demonstrated high sensitivity and specificity in the molecular characterization of bladder cancer. However, precise analysis of UcfDNA for clinical bladder cancer diagnosis remains challenging. This review summarizes the history of UcfDNA discovery, its biological properties, and the quantitative and qualitative evaluations of UcfDNA for its clinical significance and utility in bladder cancer patients, emphasizing the critical role of UcfDNA in bladder cancer diagnosis. Emerging bioactive technologies and materials currently offer promising tools for multiple UcfDNA analysis, aiming to achieve more precise and efficient capture of UcfDNA, thereby significantly enhancing diagnostic accuracy. This review also highlights breakthroughs in detection technologies and substrates with the potential to revolutionize bladder cancer diagnosis in clinic.
Collapse
Affiliation(s)
- Fei-Fei Huang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiao-Fei Di
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Mo-Han Bai
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Zhang Q, Zhang X, Xie P, Zhang W. Liquid biopsy: An arsenal for tumour screening and early diagnosis. Cancer Treat Rev 2024; 129:102774. [PMID: 38851148 DOI: 10.1016/j.ctrv.2024.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Cancer has become the second leading cause of death in the world, and more than 50% of cancer patients are diagnosed at an advanced stage. Early diagnosis of tumours is the key to improving patient quality of life and survival time and reducing the socioeconomic burden. However, there is still a lack of reliable early diagnosis methods in clinical practice. In recent years, liquid biopsy technology has developed rapidly. It has the advantages of noninvasiveness, easy access to sample sources, and reproducibility. It has become the main focus of research on the early diagnosis methods of tumours. This review summarises the research progress of existing liquid biopsy markers, such as circulating tumour DNA, circulating viral DNA, DNA methylation, circulating tumour cells, circulating RNA, exosomes, and tumour education platelets in early diagnosis of tumours, and analyses the current advantages and limitations of various markers, providing a direction for the application and transformation of liquid biopsy research in early diagnosis of clinical tumours.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peipei Xie
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
8
|
O'Keefe CM, Zhao Y, Cope LM, Ho C, Fader AN, Stone R, Ferris JS, Beavis A, Levinson K, Wethington S, Wang T, Pisanic TR, Shih I, Wang T. Single-molecule epiallelic profiling of DNA derived from routinely collected Pap specimens for noninvasive detection of ovarian cancer. Clin Transl Med 2024; 14:e1778. [PMID: 39083293 PMCID: PMC11290349 DOI: 10.1002/ctm2.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Recent advances in molecular analyses of ovarian cancer have revealed a wealth of promising tumour-specific biomarkers, including protein, DNA mutations and methylation; however, reliably detecting such alterations at satisfactorily high sensitivity and specificity through low-cost methods remains challenging, especially in early-stage diseases. Here we present PapDREAM, a new approach that enables detection of rare, ovarian-cancer-specific aberrations of DNA methylation from routinely-collected cervical Pap specimens. The PapDREAM approach employs a microfluidic platform that performs highly parallelized digital high-resolution melt to analyze locus-specific DNA methylation patterns on a molecule-by-molecule basis at or near single CpG-site resolution at a fraction (< 1/10th) of the cost of next-generation sequencing techniques. We demonstrate the feasibility of the platform by assessing intermolecular heterogeneity of DNA methylation in a panel of methylation biomarker loci using DNA derived from Pap specimens obtained from a cohort of 43 women, including 18 cases with ovarian cancer and 25 cancer-free controls. PapDREAM leverages systematic multidimensional bioinformatic analyses of locus-specific methylation heterogeneity to improve upon Pap-specimen-based detection of ovarian cancer, demonstrating a clinical sensitivity of 50% at 99% specificity in detecting ovarian cancer cases with an area under the receiver operator curve of 0.90. We then establish a logistic regression model that could be used to identify high-risk patients for subsequent clinical follow-up and monitoring. The results of this study support the utility of PapDREAM as a simple, low-cost screening method with the potential to integrate with existing clinical workflows for early detection of ovarian cancer. KEY POINTS: We present a microfluidic platform for detection and analysis of rare, heterogeneously methylated DNA within Pap specimens towards detection of ovarian cancer. The platform achieves high sensitivity (fractions <0.00005%) at a suitably low cost (∼$25) for routine screening applications. Furthermore, it provides molecule-by-molecule quantitative analysis to facilitate further study on the effect of heterogeneous methylation on cancer development.
Collapse
Affiliation(s)
- Christine M. O'Keefe
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yang Zhao
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Leslie M. Cope
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of Oncology and BiostatisticsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Chih‐Ming Ho
- Gynecologic Cancer CenterDepartment of Obstetrics and GynecologyCathay General HospitalTaipeiTaiwan
- School of MedicineFu Jen Catholic UniversityNew TaipeiTaiwan
| | - Amanda N. Fader
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rebecca Stone
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - James S. Ferris
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Anna Beavis
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kimberly Levinson
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Greater Baltimore Medical CenterTowsonMarylandUSA
| | - Stephanie Wethington
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tian‐Li Wang
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Thomas R. Pisanic
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ie‐Ming Shih
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tza‐Huei Wang
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
9
|
Park JS, Akarapipad P, Chen FE, Shao F, Mostafa H, Hsieh K, Wang TH. Digitized Kinetic Analysis Enhances Genotyping Capacity of CRISPR-Based Biosensing. ACS NANO 2024; 18:18058-18070. [PMID: 38922290 DOI: 10.1021/acsnano.4c05312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
CRISPR/Cas systems have been widely employed for nucleic acid biosensing and have been further advanced for mutation detection by virtue of the sequence specificity of crRNA. However, existing CRISPR-based genotyping methods are limited by the mismatch tolerance of Cas effectors, necessitating a comprehensive screening of crRNAs to effectively distinguish between wild-type and point-mutated sequences. To circumvent the limitation of conventional CRISPR-based genotyping, here, we introduce Single-Molecule kinetic Analysis via a Real-Time digital CRISPR/Cas12a-assisted assay (SMART-dCRISPR). SMART-dCRISPR leverages the differential kinetics of the signal increase in CRISPR/Cas systems, which is modulated by the complementarity between crRNA and the target sequence. It employs single-molecule digital measurements to discern mutations based on kinetic profiles that could otherwise be obscured by variations in the target concentrations. We applied SMART-dCRISPR to genotype notable mutations in SARS-CoV-2, point mutation (K417N) and deletion (69/70DEL), successfully distinguishing wild-type, Omicron BA.1, and Omicron BA.2 SARS-CoV-2 strains from clinical nasopharyngeal/nasal swab samples. Additionally, we introduced a portable digital real-time sensing device to streamline SMART-dCRISPR and enhance its practicality for point-of-care settings. The combination of a rapid and sensitive isothermal CRISPR-based assay with single-molecule kinetic analysis in a portable format significantly enhances the versatility of CRISPR-based nucleic acid biosensing and genotyping.
Collapse
Affiliation(s)
- Joon Soo Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patarajarin Akarapipad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Heba Mostafa
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Li C, Kang N, Ye S, Huang W, Wang X, Wang C, Li Y, Liu YF, Lan Y, Ma L, Zhao Y, Han Y, Fu J, Shen D, Dong L, Du W. All-In-One OsciDrop Digital PCR System for Automated and Highly Multiplexed Molecular Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309557. [PMID: 38516754 DOI: 10.1002/advs.202309557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Digital PCR (dPCR) holds immense potential for precisely detecting nucleic acid markers essential for personalized medicine. However, its broader application is hindered by high consumable costs, complex procedures, and restricted multiplexing capabilities. To address these challenges, an all-in-one dPCR system is introduced that eliminates the need for microfabricated chips, offering fully automated operations and enhanced multiplexing capabilities. Using this innovative oscillation-induced droplet generation technique, OsciDrop, this system supports a comprehensive dPCR workflow, including precise liquid handling, pipette-based droplet printing, in situ thermocycling, multicolor fluorescence imaging, and machine learning-driven analysis. The system's reliability is demonstrated by quantifying reference materials and evaluating HER2 copy number variation in breast cancer. Its multiplexing capability is showcased with a quadruplex dPCR assay that detects key EGFR mutations, including 19Del, L858R, and T790M in lung cancer. Moreover, the digital stepwise melting analysis (dSMA) technique is introduced, enabling high-multiplex profiling of seven major EGFR variants spanning 35 subtypes. This innovative dPCR system presents a cost-effective and versatile alternative, overcoming existing limitations and paving the way for transformative advances in precision diagnostics.
Collapse
Affiliation(s)
- Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Nan Kang
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Shun Ye
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Weihang Huang
- Center for Corpus Research, Department of English Language and Linguistics, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Cheng Wang
- Department of Breast Surgery Huangpu Branch, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuchen Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Biomedical Sciences College & Shandong Medical Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yan-Fei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Ma
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Yuhang Zhao
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Yong Han
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Jun Fu
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Danhua Shen
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
11
|
Gu Y, Fan C, Yang H, Sun H, Wang X, Qiu X, Chen B, Li CM, Guo C. Fluorogenic RNA Aptamer-Based Amplification and Transcription Strategy for Label-free Sensing of Methyltransferase Activity in Complex Matrixes. Adv Biol (Weinh) 2024; 8:e2300668. [PMID: 38327153 DOI: 10.1002/adbi.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 02/09/2024]
Abstract
DNA methyltransferase is significant in cellular activities and gene expression, and its aberrant expression is closely linked to various cancers during initiation and progression. Currently, there is a great demand for reliable and label-free techniques for DNA methyltransferase evaluation in tumor diagnosis and cancer therapy. Herein, a low-background fluorescent RNA aptamer-based sensing approach for label-free quantification of cytosine-guanine (CpG) dinucleotides methyltransferase (M.SssI) is reported. The fluorogenic light-up RNA aptamers-based strategy exhibits high selectivity via restriction endonuclease, padlock-based recognition, and RNA transcription. By combining rolling circle amplification (RCA), and RNA transcription with fluorescence response of RNA aptamers of Spinach-dye compound, the proposed platform exhibited efficiently ultrahigh sensitivity toward M.SssI. Eventually, the detection can be achieved in a linear range of 0.02-100 U mL-1 with a detection limit of 1.6 × 10-3 U mL-1. Owing to these superior features, the method is further applied in serum samples spiked M.SssI, which delivers a recovery ranging from 92.0 to 107.0% and a relative standard deviation <7.0%, providing a promising and practical tool for determining M.SssI in complex biological matrices.
Collapse
Affiliation(s)
- Yu Gu
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
| | - Cunxia Fan
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
| | - Hongbin Yang
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
| | - Huiping Sun
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
| | - Xiaobao Wang
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
| | - Xingchen Qiu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
| | - Bo Chen
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, Department of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Chang-Ming Li
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
| | - Chunxian Guo
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Kerui Road, Suzhou, 215009, P.R. China
| |
Collapse
|
12
|
Jiang YH, Liu YS, Wei YC, Jhang JF, Kuo HC, Huang HH, Chan MWY, Lin GL, Cheng WC, Lin SC, Wang HJ. Hypermethylation Loci of ZNF671, IRF8, and OTX1 as Potential Urine-Based Predictive Biomarkers for Bladder Cancer. Diagnostics (Basel) 2024; 14:468. [PMID: 38472940 DOI: 10.3390/diagnostics14050468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Bladder cancer (BCa) is a significant health issue and poses a healthcare burden on patients, highlighting the importance of an effective detection method. Here, we developed a urine DNA methylation diagnostic panel for distinguishing between BCa and non-BCa. In the discovery stage, an analysis of the TCGA database was conducted to identify BCa-specific DNA hypermethylation markers. In the validation phase, DNA methylation levels of urine samples were measured with real-time quantitative methylation-specific PCR (qMSP). Comparative analysis of the methylation levels between BCa and non-BCa, along with the receiver operating characteristic (ROC) analyses with machine learning algorithms (logistic regression and decision tree methods) were conducted to develop practical diagnostic panels. The performance evaluation of the panel shows that the individual biomarkers of ZNF671, OTX1, and IRF8 achieved AUCs of 0.86, 0.82, and 0.81, respectively, while the combined yielded an AUC of 0.91. The diagnostic panel using the decision tree algorithm attained an accuracy, sensitivity, and specificity of 82.6%, 75.0%, and 90.9%, respectively. Our results show that the urine-based DNA methylation diagnostic panel provides a sensitive and specific method for detecting and stratifying BCa, showing promise as a standard test that could enhance the diagnosis and prognosis of BCa in clinical settings.
Collapse
Affiliation(s)
- Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Tzu Chi University, Hualien 970374, Taiwan
| | - Yu-Shu Liu
- Guzip Biomarkers Corporation, Hsinchu City 302041, Taiwan
- Phalanx Biotech, Hsinchu City 302041, Taiwan
| | - Yu-Chung Wei
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua City 500207, Taiwan
| | - Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Tzu Chi University, Hualien 970374, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Tzu Chi University, Hualien 970374, Taiwan
- Guzip Biomarkers Corporation, Hsinchu City 302041, Taiwan
| | - Hsin-Hui Huang
- Guzip Biomarkers Corporation, Hsinchu City 302041, Taiwan
- Phalanx Biotech, Hsinchu City 302041, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chiayi 621301, Taiwan
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chiayi 621301, Taiwan
| | - Wen-Chi Cheng
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Shu-Chuan Lin
- Guzip Biomarkers Corporation, Hsinchu City 302041, Taiwan
- Phalanx Biotech, Hsinchu City 302041, Taiwan
| | - Hung-Jung Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 97004, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
13
|
Li B, Wang C. Endonuclease IV and T4 ligase enhanced detection of mutations in low abundance. Analyst 2024; 149:1050-1054. [PMID: 38231135 DOI: 10.1039/d3an02083e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We propose a mutant detection approach based on endonuclease IV and DNA ligase in combination with qPCR. The enzymes functioned cooperatively to facilitate PCR for low abundance DNA detection. We demonstrate that our approach can distinguish mutations as low as 0.01%, indicating the potential application of this strategy in early cancer diagnosis.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China.
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010020, China.
| |
Collapse
|
14
|
Zavarykina TM, Lomskova PK, Pronina IV, Khokhlova SV, Stenina MB, Sukhikh GT. Circulating Tumor DNA Is a Variant of Liquid Biopsy with Predictive and Prognostic Clinical Value in Breast Cancer Patients. Int J Mol Sci 2023; 24:17073. [PMID: 38069396 PMCID: PMC10706922 DOI: 10.3390/ijms242317073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This paper introduces the reader to the field of liquid biopsies and cell-free nucleic acids, focusing on circulating tumor DNA (ctDNA) in breast cancer (BC). BC is the most common type of cancer in women, and progress with regard to treatment has been made in recent years. Despite this, there remain a number of unresolved issues in the treatment of BC; in particular, early detection and diagnosis, reliable markers of response to treatment and for the prediction of recurrence and metastasis, especially for unfavorable subtypes, are needed. It is also important to identify biomarkers for the assessment of drug resistance and for disease monitoring. Our work is devoted to ctDNA, which may be such a marker. Here, we describe its main characteristics and potential applications in clinical oncology. This review considers the results of studies devoted to the analysis of the prognostic and predictive roles of various methods for the determination of ctDNA in BC patients. Currently known epigenetic changes in ctDNA with clinical significance are reviewed. The possibility of using ctDNA as a predictive and prognostic marker for monitoring BC and predicting the recurrence and metastasis of cancer is also discussed, which may become an important part of a precision approach to the treatment of BC.
Collapse
Affiliation(s)
- Tatiana M. Zavarykina
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Polina K. Lomskova
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
| | - Svetlana V. Khokhlova
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Marina B. Stenina
- “N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of the Russian Federation, Moscow 115522, Russia;
| | - Gennady T. Sukhikh
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| |
Collapse
|
15
|
Xie C, Huang Q, Liu Y. Utility of peripheral blood macrophage factor Apo10 and TKTL1 as markers in distinguishing malignant from benign lung nodules: a protocol for a prospective cohort study in Southern China. BMJ Open 2023; 13:e076573. [PMID: 37914307 PMCID: PMC10626805 DOI: 10.1136/bmjopen-2023-076573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/13/2023] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION Lung nodules are one of the most prevalent diseases. Medical imaging methods have a high false positive rate for distinguishing malignant nodules from benign nodules. Therefore, developing new technologies with high accuracy for screening malignant nodules is of great importance for lung nodule surveillance. Use of flow cytometry to detect biomarkers in blood macrophages (epitop detect in macrophages/macrophages) has opened a new era for early and noninvasive diagnosis of cancer. This planned study aims to examine whether the peripheral blood macrophage factors Apo10 and TKTL1 accurately distinguish malignant nodules from benign nodules. METHODS AND ANALYSES We plan to enrol in this study 3825 participants with lung nodules who will attend their annual physical examination at Sun Yat-sen University Cancer Center. Apo10 and TKTL1 levels in all patients will be tested at 60 min after their last meal every 6 months during their 3-year follow-up. Biopsy or surgical pathology results will be collected as the gold standard to assess the accuracy of Apo10 and TKTL1 in distinguishing malignant nodules from benign nodules. The sensitivity, specificity, positive predictive value, negative predictive value and area under the receiving operating characteristic curve will also be evaluated. ETHICS AND DISSEMINATION The study is approved by the medical ethics committee of Sun Yat-sen University (SL-G2022-005-02). The results of this study will be disseminated in peer-reviewed publications and presentations at international scientific meetings and will also be disseminated to the participants. TRIAL REGISTRATION NUMBER ChiCTR2300073823; Pre-results.
Collapse
Affiliation(s)
- Chuanbo Xie
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiyu Huang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuying Liu
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Verlicchi A, Canale M, Chiadini E, Cravero P, Urbini M, Andrikou K, Pasini L, Flospergher M, Burgio MA, Crinò L, Ulivi P, Delmonte A. The Clinical Significance of Circulating Tumor DNA for Minimal Residual Disease Identification in Early-Stage Non-Small Cell Lung Cancer. Life (Basel) 2023; 13:1915. [PMID: 37763318 PMCID: PMC10532754 DOI: 10.3390/life13091915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer (LC) is the deadliest malignancy worldwide. In an operable stage I-III patient setting, the detection of minimal residual disease (MRD) after curative treatment could identify patients at higher risk of relapse. In this context, the study of circulating tumor DNA (ctDNA) is emerging as a useful tool to identify patients who could benefit from an adjuvant treatment, and patients who could avoid adverse events related to a more aggressive clinical management. On the other hand, ctDNA profiling presents technical, biological and standardization challenges before entering clinical practice as a decisional tool. In this paper, we review the latest advances regarding the role of ctDNA in identifying MRD and in predicting patients' prognosis, with a particular focus on clinical trials investigating the potential of ctDNA, the technical challenges to address and the biological parameters that influence the MRD detection.
Collapse
Affiliation(s)
- Alberto Verlicchi
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Elisa Chiadini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Paola Cravero
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Kalliopi Andrikou
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Luigi Pasini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Michele Flospergher
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Marco Angelo Burgio
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.C.); (M.U.); (L.P.); (P.U.)
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.C.); (K.A.); (M.F.); (M.A.B.); (L.C.); (A.D.)
| |
Collapse
|