1
|
Chen S, Wang W, Shen L, Liu H, Luo J, Ren Y, Cui S, Ye Y, Shi G, Cheng F, Su X, Dai L, Gou M, Deng H. A 3D-printed microdevice encapsulates vascularized islets composed of iPSC-derived β-like cells and microvascular fragments for type 1 diabetes treatment. Biomaterials 2025; 315:122947. [PMID: 39547136 DOI: 10.1016/j.biomaterials.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Transplantation of insulin-secreting cells provides a promising method for re-establishing the autonomous blood glucose control ability of type 1 diabetes (T1D) patients, but the low survival of the transplanted cells hinder the therapeutic efficacy. In this study, we 3D-printed an encapsulation system containing β-like cells and microvascular fragments (MVF), to create a retrivable microdevice with vascularized islets in vivo for T1D therapy. The functional β-like cells were differentiated from the urine epithelial cell-derived induced pluripotent stem cells (UiPSCs). Single-cell RNA sequencing provided an integrative study and macroscopic developmental analyses of the entire process of differentiation, which revealed the developmental trajectory of differentiation in vitro follows the developmental pattern of embryonic pancreas in vivo. The MVF were isolated from the epididymal fat pad. The microdevice with a groove structure were rapidly fabricated by the digital light processing (DLP)-3D printing technology. The β-like cells and MVF were uniformly distributed in the device. After subcutaneous transplantation into C57BL/6 mice, the microdevice have less collagen accumulation and low immune cell infiltration. Moreover, the microdevice encapsulated vascularized islets reduced hyperglycemia in 33 % of the treated mice for up to 100 days without immunosuppressants, and the humanized C-peptide was also detected in the serum of the mice. In summary, we described the microdevice-protected vascularized islets for long-term treatment of T1D, with high safety and potential clinical transformative value, and may therefore provide a translatable solution to advance the research progress of β cell replacement therapy for T1D.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshuang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lanlin Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushuang Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Susu Cui
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hou K, Wang J, Song W. Pluripotent stem cells-derived Schwann cells: an innovative strategy for trigeminal neuralgia? Int J Surg 2024; 110:6005-6006. [PMID: 39275784 PMCID: PMC11392200 DOI: 10.1097/js9.0000000000001735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 09/16/2024]
Affiliation(s)
| | - Jian Wang
- Research and Development Department, Allife Medicine Inc
| | - Wenpeng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Frederiksen HR, Glantz A, Vøls KK, Skov S, Tveden-Nyborg P, Freude K, Doehn U. CRISPR-Cas9 immune-evasive hESCs are rejected following transplantation into immunocompetent mice. Front Genome Ed 2024; 6:1403395. [PMID: 38863835 PMCID: PMC11165197 DOI: 10.3389/fgeed.2024.1403395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Although current stem cell therapies exhibit promising potential, the extended process of employing autologous cells and the necessity for donor-host matching to avert the rejection of transplanted cells significantly limit the widespread applicability of these treatments. It would be highly advantageous to generate a pluripotent universal donor stem cell line that is immune-evasive and, therefore, not restricted by the individual's immune system, enabling unlimited application within cell replacement therapies. Before such immune-evasive stem cells can be moved forward to clinical trials, in vivo testing via transplantation experiments in immune-competent animals would be a favorable approach preceding preclinical testing. By using human stem cells in immune competent animals, results will be more translatable to a clinical setting, as no parts of the immune system have been altered, although in a xenogeneic setting. In this way, immune evasiveness, cell survival, and unwanted proliferative effects can be assessed before clinical trials in humans. The current study presents the generation and characterization of three human embryonic stem cell lines (hESCs) for xenogeneic transplantation in immune-competent mice. The major histocompatibility complexes I- and II-encoding genes, B2M and CIITA, have been deleted from the hESCs using CRISPR-Cas9-targeted gene replacement strategies and knockout. B2M was knocked out by the insertion of murine CD47. Human-secreted embryonic alkaline phosphatase (hSEAP) was inserted in a safe harbor site to track cells in vivo. The edited hESCs maintained their pluripotency, karyotypic normality, and stable expression of murine CD47 and hSEAP in vitro. In vivo transplantation of hESCs into immune-competent BALB/c mice was successfully monitored by measuring hSEAP in blood samples. Nevertheless, transplantation of immune-evasive hESCs resulted in complete rejection within 11 days, with clear immune infiltration of T-cells on day 8. Our results reveal that knockout of B2M and CIITA together with species-specific expression of CD47 are insufficient to prevent rejection in an immune-competent and xenogeneic context.
Collapse
Affiliation(s)
- Henriette Reventlow Frederiksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Søren Skov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Doehn
- Cell Therapy Research, Novo Nordisk A/S, Maaloev, Denmark
| |
Collapse
|
4
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
5
|
Pazzin DB, Previato TTR, Budelon Gonçalves JI, Zanirati G, Xavier FAC, da Costa JC, Marinowic DR. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024; 13:745. [PMID: 38727281 PMCID: PMC11083827 DOI: 10.3390/cells13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.
Collapse
Affiliation(s)
- Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Fernando Antonio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| |
Collapse
|
6
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
7
|
Liu N, Ge Y, Yang Y, Zhao F, Lv Y, Li Z, Dong R, Liu Y, Gai Z. Human induced pluripotent stem cell line (SDQLCHi064-A) derived from a patient with Canavan disease carrying c.556_559dup GTTC and c.919delA mutations in the ASPA gene. Stem Cell Res 2024; 76:103325. [PMID: 38309148 DOI: 10.1016/j.scr.2024.103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
Canavan disease (CD, OMIM# 271900) is an autosomal recessive neurodegenerative disorder caused by homozygous or compound heterozygous mutations in ASPA gene, which result in catalytic deficiency of the aspartoacylase enzyme and the accumulation of N-acetylaspartic acid (NAA). Clinical presentation varies according to the age of disease onset. Here, we generated a human induced pluripotent stem cell line (hiPSCs) SDQLCHi064-A from a 5-month old boy with CD carrying two novel frame shift mutations c.556_559dupGTTC (p.L187Rfs*5) and c.919delA (p.S307Vfs*24) of the ASPA gene, in order for us to better understanding the disease.
Collapse
Affiliation(s)
- Ning Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| | - Yongsheng Ge
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| | - Yanan Yang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| | - Fen Zhao
- Epilepsy Center, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China
| | - Yuqiang Lv
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| | - Zilong Li
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| | - Rui Dong
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China.
| | - Yi Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China.
| | - Zhongtao Gai
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| |
Collapse
|
8
|
Ohkura T, Burns AJ, Hotta R. Updates and Challenges in ENS Cell Therapy for the Treatment of Neurointestinal Diseases. Biomolecules 2024; 14:229. [PMID: 38397466 PMCID: PMC10887039 DOI: 10.3390/biom14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurointestinal diseases represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with cell therapy to restore missing or defective components of the gut neuromusculature offers new hope for potential cures. This review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. We also explore some of the practical challenges that must be overcome before cell-based therapies can be applied in the clinical setting. Although a number of obstacles remain, the rapid advances made in the enteric neural stem cell field suggest that such therapies are on the near horizon.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| | - Alan J. Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| |
Collapse
|
9
|
Feng L, Chao J, Zhang M, Pacquing E, Hu W, Shi Y. Developing a human iPSC-derived three-dimensional myelin spheroid platform for modeling myelin diseases. iScience 2023; 26:108037. [PMID: 37867939 PMCID: PMC10589867 DOI: 10.1016/j.isci.2023.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/11/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Myelin defects cause a collection of myelin disorders in the brain. The lack of human models has limited us from better understanding pathological mechanisms of myelin diseases. While human induced pluripotent stem cell (hiPSC)-derived spheroids or organoids have been used to study brain development and disorders, it has been difficult to recapitulate mature myelination in these structures. Here, we have developed a method to generate three-dimensional (3D) myelin spheroids from hiPSCs in a robust and reproducible manner. Using this method, we generated myelin spheroids from patient iPSCs to model Canavan disease (CD), a demyelinating disorder. By using CD patient iPSC-derived myelin spheroids treated with N-acetyl-aspartate (NAA), we were able to recapitulate key pathological features of the disease and show that high-level NAA is sufficient to induce toxicity on myelin sheaths. Our study has established a 3D human cellular platform to model human myelin diseases for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Lizhao Feng
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mingzi Zhang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Elizabeth Pacquing
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Cui Q, Jeyachandran AV, Garcia G, Qin C, Zhou Y, Zhang M, Wang C, Sun G, Liu W, Zhou T, Feng L, Palmer C, Li Z, Aziz A, Gomperts BN, Feng P, Arumugaswami V, Shi Y. The Apolipoprotein E neutralizing antibody inhibits SARS-CoV-2 infection by blocking cellular entry of lipoviral particles. MedComm (Beijing) 2023; 4:e400. [PMID: 37822714 PMCID: PMC10563865 DOI: 10.1002/mco2.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent for coronavirus disease 2019 (COVID-19). Although vaccines have helped to prevent uncontrolled viral spreading, our understanding of the fundamental biology of SARS-CoV-2 infection remains insufficient, which hinders effective therapeutic development. Here, we found that Apolipoprotein E (ApoE), a lipid binding protein, is hijacked by SARS-CoV-2 for infection. Preincubation of SARS-CoV-2 with a neutralizing antibody specific to ApoE led to inhibition of SARS-CoV-2 infection. The ApoE neutralizing antibody efficiently blocked SARS-CoV-2 infection of human iPSC-derived astrocytes and air-liquid interface organoid models in addition to human ACE2-expressing HEK293T cells and Calu-3 lung cells. ApoE mediates SARS-CoV-2 entry through binding to its cellular receptors such as the low density lipoprotein receptor (LDLR). LDLR knockout or ApoE mutations at the receptor binding domain or an ApoE mimetic peptide reduced SARS-CoV-2 infection. Furthermore, we detected strong membrane LDLR expression on SARS-CoV-2 Spike-positive cells in human lung tissues, whereas no or low ACE2 expression was detected. This study provides a new paradigm for SARS-CoV-2 cellular entry through binding of ApoE on the lipoviral particles to host cell receptor(s). Moreover, this study suggests that ApoE neutralizing antibodies are promising antiviral therapies for COVID-19 by blocking entry of both parental virus and variants of concern.
Collapse
Affiliation(s)
- Qi Cui
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | | | - Gustavo Garcia
- Department of Molecular and Medical PharmacologyUCLALos AngelesCaliforniaUSA
| | - Chao Qin
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yu Zhou
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mingzi Zhang
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Cheng Wang
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Guihua Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Wei Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Tao Zhou
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Lizhao Feng
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Chance Palmer
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Zhuo Li
- Electron Microscopy and Atomic Force Microscopy CoreBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Adam Aziz
- Mattel Children's Hospital UCLADepartment of PediatricsDavid Geffen School of MedicineUCLAUCLA Children's Discovery and Innovation InstituteLos AngelesCaliforniaUSA
- UCLAMolecular Biology InstituteLos AngelesCaliforniaUSA
- UCLAJonsson Comprehensive Cancer CenterLos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUCLADavid Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Brigitte N. Gomperts
- Mattel Children's Hospital UCLADepartment of PediatricsDavid Geffen School of MedicineUCLAUCLA Children's Discovery and Innovation InstituteLos AngelesCaliforniaUSA
- UCLAMolecular Biology InstituteLos AngelesCaliforniaUSA
- UCLAJonsson Comprehensive Cancer CenterLos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUCLADavid Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Pinghui Feng
- Section of Infection and ImmunityHerman Ostrow School of DentistryNorris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical PharmacologyUCLALos AngelesCaliforniaUSA
- UCLAEli and Edythe Broad Stem Cell Research CenterLos AngelesCaliforniaUSA
| | - Yanhong Shi
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| |
Collapse
|