1
|
Liu P, Pan Y, Chang HC, Wang W, Fang Y, Xue X, Zou J, Toothaker JM, Olaloye O, Santiago EG, McCourt B, Mitsialis V, Presicce P, Kallapur SG, Snapper SB, Liu JJ, Tseng GC, Konnikova L, Liu S. Comprehensive evaluation and practical guideline of gating methods for high-dimensional cytometry data: manual gating, unsupervised clustering, and auto-gating. Brief Bioinform 2024; 26:bbae633. [PMID: 39656848 DOI: 10.1093/bib/bbae633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Cytometry is an advanced technique for simultaneously identifying and quantifying many cell surface and intracellular proteins at a single-cell resolution. Analyzing high-dimensional cytometry data involves identifying and quantifying cell populations based on their marker expressions. This study provided a quantitative review and comparison of various ways to phenotype cellular populations within the cytometry data, including manual gating, unsupervised clustering, and supervised auto-gating. Six datasets from diverse species and sample types were included in the study, and manual gating with two hierarchical layers was used as the truth for evaluation. For manual gating, results from five researchers were compared to illustrate the gating consistency among different raters. For unsupervised clustering, 23 tools were quantitatively compared in terms of accuracy with the truth and computing cost. While no method outperformed all others, several tools, including PAC-MAN, CCAST, FlowSOM, flowClust, and DEPECHE, generally demonstrated strong performance. For supervised auto-gating methods, four algorithms were evaluated, where DeepCyTOF and CyTOF Linear Classifier performed the best. We further provided practical recommendations on prioritizing gating methods based on different application scenarios. This study offers comprehensive insights for biologists to understand diverse gating methods and choose the best-suited ones for their applications.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Yuchen Pan
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX 77030, US
| | - Hung-Ching Chang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Wenjia Wang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Yusi Fang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Xiangning Xue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Jian Zou
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Jessica M Toothaker
- Department of Immunology, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA 15213, US
- Department of Pediatrics, Yale University, 15 York Street New Haven, CT 06510, US
| | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University, 15 York Street New Haven, CT 06510, US
| | | | - Black McCourt
- Department of Pediatrics, Yale University, 15 York Street New Haven, CT 06510, US
| | - Vanessa Mitsialis
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, US
- Department of Medicine, Division of Gastroenterology, Hepatology, and Endoscopy, Brigham & Women's Hospital and Department of Medicine, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, US
| | - Pietro Presicce
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095, US
| | - Suhas G Kallapur
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095, US
| | - Scott B Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, US
- Department of Medicine, Division of Gastroenterology, Hepatology, and Endoscopy, Brigham & Women's Hospital and Department of Medicine, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, US
| | - Jia-Jun Liu
- Drug Discovery Institute, School of Medicine, University of Pittsburgh, 700 Technology Dr, Pittsburgh, PA 15219, US
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, US
| | - George C Tseng
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
- Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15213, US
| | - Liza Konnikova
- Department of Pediatrics, Yale University, 15 York Street New Haven, CT 06510, US
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095, US
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, 333 Cedar Street, New Haven, CT 06510, US
- Department of Immunobiology, Yale University, 300 Cedar Street, New Haven, CT 06520, US
- Program in Human and Translational Immunology, Yale University, 300 Cedar Street, New Haven, CT 06520, US
- Program in Translational Biomedicine, Yale University, 300 Cedar Street, New Haven, CT 06520, US
- Center for Systems and Engineering Immunology, Yale University, 100 College St., New Haven, CT 06510, US
| | - Silvia Liu
- Drug Discovery Institute, School of Medicine, University of Pittsburgh, 700 Technology Dr, Pittsburgh, PA 15219, US
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, US
- Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15213, US
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA 15261, US
- Hillman Cancer Center, University of Pittsburgh, 5150 Centre Ave., Pittsburgh, PA 15232, US
| |
Collapse
|
2
|
Fu S, Chen Z, Luo Z, Nie M, Fu T, Zhou Y, Yang Q, Zhu F, Ni F. Chem(Pro)2: the atlas of chemoproteomic probes labelling human proteins. Nucleic Acids Res 2024:gkae943. [PMID: 39436046 DOI: 10.1093/nar/gkae943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Chemoproteomic probes (CPPs) have been widely considered as powerful molecular biological tools that enable the highly efficient discovery of both binding proteins and modes of action for the studied compounds. They have been successfully used to validate targets and identify binders. The design of CPP has been considered extremely challenging, which asks for the generalization using a large number of probe data. However, none of the existing databases gives such valuable data of CPPs. Herein, a database entitled 'Chem(Pro)2' was therefore developed to systematically describe the atlas of diverse types of CPPs labelling human protein in living cell/lysate. With the booming application of chemoproteomic technique and artificial intelligence in current chemical biology study, Chem(Pro)2 was expected to facilitate the AI-based learning of interacting pattern among molecules for discovering innovative targets and new drugs. Till now, Chem(Pro)2 has been open to all users without any login requirement at: https://idrblab.org/chemprosquare/.
Collapse
Affiliation(s)
- Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Luo
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Meiyun Nie
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| |
Collapse
|
3
|
Li Y, Li F, Duan Z, Liu R, Jiao W, Wu H, Zhu F, Xue W. SYNBIP 2.0: epitopes mapping, sequence expansion and scaffolds discovery for synthetic binding protein innovation. Nucleic Acids Res 2024:gkae893. [PMID: 39413165 DOI: 10.1093/nar/gkae893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
Synthetic binding proteins (SBPs) represent a pivotal class of artificially engineered proteins, meticulously crafted to exhibit targeted binding properties and specific functions. Here, the SYNBIP database, a comprehensive resource for SBPs, has been significantly updated. These enhancements include (i) featuring 3D structures of 899 SBP-target complexes to illustrate the binding epitopes of SBPs, (ii) using the structures of SBPs in the monomer or complex forms with target proteins, their sequence space has been expanded five times to 12 025 by integrating a structure-based protein generation framework and a protein property prediction tool, (iii) offering detailed information on 78 473 newly identified SBP-like scaffolds from the RCSB Protein Data Bank, and an additional 16 401 555 ones from the AlphaFold Protein Structure Database, and (iv) the database is regularly updated, incorporating 153 new SBPs. Furthermore, the structural models of all SBPs have been enhanced through the application of the AlphaFold2, with their clinical statuses concurrently refreshed. Additionally, the design methods employed for each SBP are now prominently featured in the database. In sum, SYNBIP 2.0 is designed to provide researchers with essential SBP data, facilitating their innovation in research, diagnosis and therapy. SYNBIP 2.0 is now freely accessible at https://idrblab.org/synbip/.
Collapse
Affiliation(s)
- Yanlin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Fengcheng Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, Zhejiang 310052, China
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zixin Duan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Ruihan Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Wantong Jiao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| |
Collapse
|
4
|
Ge Y, Yang M, Yu X, Zhou Y, Zhang Y, Mou M, Chen Z, Sun X, Ni F, Fu T, Liu S, Han L, Zhu F. MolBiC: the cell-based landscape illustrating molecular bioactivities. Nucleic Acids Res 2024:gkae868. [PMID: 39373530 DOI: 10.1093/nar/gkae868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
The measurement of cell-based molecular bioactivity (CMB) is critical for almost every step of drug development. With the booming application of AI in biomedicine, it is essential to have the CMB data to promote the learning of cell-based patterns for guiding modern drug discovery, but no database providing such information has been constructed yet. In this study, we introduce MolBiC, a knowledge base designed to describe valuable data on molecular bioactivity measured within a cellular context. MolBiC features 550 093 experimentally validated CMBs, encompassing 321 086 molecules and 2666 targets across 988 cell lines. Our MolBiC database is unique in describing the valuable data of CMB, which meets the critical demands for CMB-based big data promoting the learning of cell-based molecular/pharmaceutical pattern in drug discovery and development. MolBiC is now freely accessible without any login requirement at: https://idrblab.org/MolBiC/.
Collapse
Affiliation(s)
- Yichao Ge
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai 200040, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Guangzhou, Guangzhou 511458, China
| | - Mengjie Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lianyi Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai 200040, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Guangzhou, Guangzhou 511458, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
5
|
Sun X, Li H, Chen Z, Zhang Y, Wei Z, Xu H, Liao Y, Jiang W, Ge Y, Zheng L, Li T, Wu Y, Luo M, Fang L, Dong X, Xiao M, Han L, Jia Q, Zhu F. PDCdb: the biological activity and pharmaceutical information of peptide-drug conjugate (PDC). Nucleic Acids Res 2024:gkae859. [PMID: 39360619 DOI: 10.1093/nar/gkae859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Peptide-drug conjugates (PDCs) have emerged as a promising class of targeted therapeutics with substantial pharmaceutical advantages and market potentials, which is a combination of a peptide (selective to the disease-relevant target), a linker (stable in circulation but cleavable at target site) and a cytotoxic/radioactive drug (efficacious/traceable for disease). Among existing PDCs, those based on radiopharmaceuticals (a.k.a. radioactive drugs) are valued due to their accurate imaging and targeted destruction of disease sites. It's demanded to accumulate the biological activity and pharmaceutical information of PDCs. Herein, a database PDCdb was thus constructed to systematically describe these valuable data. Particularly, biological activities for 2036 PDCs were retrieved from literatures, which resulted in 1684, 613 and 2753 activity data generated based on clinical trial, animal model and cell line, respectively. Furthermore, the pharmaceutical information for all 2036 PDCs was collected, which gave the diverse data of (a) ADME property, plasma half-life and administration approach of a PDC and (b) chemical modification, primary target, mode of action, conjugating feature of the constituent peptide/linker/drug. In sum, PDCdb systematically provided the biological activities and pharmaceutical information for the most comprehensive list of PDCs among the available databases, which was expected to attract broad interest from related communities and could be freely accessible at: https://idrblab.org/PDCdb/.
Collapse
Affiliation(s)
- Xiuna Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hanyang Li
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhangle Wei
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hangwei Xu
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yang Liao
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Wanghao Jiang
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yichao Ge
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Teng Li
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuting Wu
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Meiyin Luo
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Mang Xiao
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai 315211, China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Feng Zhu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
- College of Pharmaceutical Sciences, Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Li F, Mou M, Li X, Xu W, Yin J, Zhang Y, Zhu F. DrugMAP 2.0: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2024:gkae791. [PMID: 39271119 DOI: 10.1093/nar/gkae791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The escalating costs and high failure rates have decelerated the pace of drug development, which amplifies the research interests in developing combinatorial/repurposed drugs and understanding off-target adverse drug reaction (ADR). In other words, it is demanded to delineate the molecular atlas and pharma-information for the combinatorial/repurposed drugs and off-target interactions. However, such invaluable data were inadequately covered by existing databases. In this study, a major update was thus conducted to the DrugMAP, which accumulated (a) 20831 combinatorial drugs and their interacting atlas involving 1583 pharmacologically important molecules; (b) 842 repurposed drugs and their interacting atlas with 795 molecules; (c) 3260 off-targets relevant to the ADRs of 2731 drugs and (d) various types of pharmaceutical information, including diverse ADMET properties, versatile diseases, and various ADRs/off-targets. With the growing demands for discovering combinatorial/repurposed therapies and the rapidly emerging interest in AI-based drug discovery, DrugMAP was highly expected to act as an indispensable supplement to existing databases facilitating drug discovery, which was accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xiaoyi Li
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Weize Xu
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
7
|
Zhang H, Zhou Y, Zhang Z, Sun H, Pan Z, Mou M, Zhang W, Ye Q, Hou T, Li H, Hsieh CY, Zhu F. Large Language Model-Based Natural Language Encoding Could Be All You Need for Drug Biomedical Association Prediction. Anal Chem 2024. [PMID: 39011990 DOI: 10.1021/acs.analchem.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Analyzing drug-related interactions in the field of biomedicine has been a critical aspect of drug discovery and development. While various artificial intelligence (AI)-based tools have been proposed to analyze drug biomedical associations (DBAs), their feature encoding did not adequately account for crucial biomedical functions and semantic concepts, thereby still hindering their progress. Since the advent of ChatGPT by OpenAI in 2022, large language models (LLMs) have demonstrated rapid growth and significant success across various applications. Herein, LEDAP was introduced, which uniquely leveraged LLM-based biotext feature encoding for predicting drug-disease associations, drug-drug interactions, and drug-side effect associations. Benefiting from the large-scale knowledgebase pre-training, LLMs had great potential in drug development analysis owing to their holistic understanding of natural language and human topics. LEDAP illustrated its notable competitiveness in comparison with other popular DBA analysis tools. Specifically, even in simple conjunction with classical machine learning methods, LLM-based feature representations consistently enabled satisfactory performance across diverse DBA tasks like binary classification, multiclass classification, and regression. Our findings underpinned the considerable potential of LLMs in drug development research, indicating a catalyst for further progress in related fields.
Collapse
Affiliation(s)
- Hanyu Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Ye
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honglin Li
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Zhang W, Mou M, Hu W, Lu M, Zhang H, Zhang H, Luo Y, Xu H, Tao L, Dai H, Gao J, Zhu F. MOINER: A Novel Multiomics Early Integration Framework for Biomedical Classification and Biomarker Discovery. J Chem Inf Model 2024; 64:2720-2732. [PMID: 38373720 DOI: 10.1021/acs.jcim.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
In the context of precision medicine, multiomics data integration provides a comprehensive understanding of underlying biological processes and is critical for disease diagnosis and biomarker discovery. One commonly used integration method is early integration through concatenation of multiple dimensionally reduced omics matrices due to its simplicity and ease of implementation. However, this approach is seriously limited by information loss and lack of latent feature interaction. Herein, a novel multiomics early integration framework (MOINER) based on information enhancement and image representation learning is thus presented to address the challenges. MOINER employs the self-attention mechanism to capture the intrinsic correlations of omics-features, which make it significantly outperform the existing state-of-the-art methods for multiomics data integration. Moreover, visualizing the attention embedding and identifying potential biomarkers offer interpretable insights into the prediction results. All source codes and model for MOINER are freely available https://github.com/idrblab/MOINER.
Collapse
Affiliation(s)
- Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Hu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongquan Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
9
|
Zhou Y, Chen Z, Yang M, Chen F, Yin J, Zhang Y, Zhou X, Sun X, Ni Z, Chen L, Lv Q, Zhu F, Liu S. FERREG: ferroptosis-based regulation of disease occurrence, progression and therapeutic response. Brief Bioinform 2024; 25:bbae223. [PMID: 38742521 PMCID: PMC11091744 DOI: 10.1093/bib/bbae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Ferroptosis is a non-apoptotic, iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species. In recent years, a large and growing body of literature has investigated ferroptosis. Since ferroptosis is associated with various physiological activities and regulated by a variety of cellular metabolism and mitochondrial activity, ferroptosis has been closely related to the occurrence and development of many diseases, including cancer, aging, neurodegenerative diseases, ischemia-reperfusion injury and other pathological cell death. The regulation of ferroptosis mainly focuses on three pathways: system Xc-/GPX4 axis, lipid peroxidation and iron metabolism. The genes involved in these processes were divided into driver, suppressor and marker. Importantly, small molecules or drugs that mediate the expression of these genes are often good treatments in the clinic. Herein, a newly developed database, named 'FERREG', is documented to (i) providing the data of ferroptosis-related regulation of diseases occurrence, progression and drug response; (ii) explicitly describing the molecular mechanisms underlying each regulation; and (iii) fully referencing the collected data by cross-linking them to available databases. Collectively, FERREG contains 51 targets, 718 regulators, 445 ferroptosis-related drugs and 158 ferroptosis-related disease responses. FERREG can be accessed at https://idrblab.org/ferreg/.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mengjie Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fengyun Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiayi Yin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xuheng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ziheng Ni
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lu Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qun Lv
- Department of Respiratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 311121, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
10
|
Yang Q, Chen S, Jiang W, Mi L, Liu J, Hu Y, Ji X, Wang J, Zhu F. MultiClassMetabo: A Superior Classification Model Constructed Using Metabolic Markers in Multiclass Metabolomics. Anal Chem 2024; 96:1410-1418. [PMID: 38221713 DOI: 10.1021/acs.analchem.3c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Multiclass metabolomics has become a popular technique for revealing the mechanisms underlying certain physiological processes, different tumor types, or different therapeutic responses. In multiclass metabolomics, it is highly important to uncover the underlying biological information on biosamples by identifying the metabolic markers with the most associations and classifying the different sample classes. The classification problem of multiclass metabolomics is more difficult than that of the binary problem. To date, various methods exist for constructing classification models and identifying metabolic markers consisting of well-established techniques and newly emerging machine learning algorithms. However, how to construct a superior classification model using these methods remains unclear for a given multiclass metabolomic data set. Herein, MultiClassMetabo has been developed for constructing a superior classification model using metabolic markers identified in multiclass metabolomics. MultiClassMetabo can enable online services, including (a) identifying metabolic markers by marker identification methods, (b) constructing classification models by classification methods, and (c) performing a comprehensive assessment from multiple perspectives to construct a superior classification model for multiclass metabolomics. In summary, MultiClassMetabo is distinguished for its capability to construct a superior classification model using the most appropriate method through a comprehensive assessment, which makes it an important complement to other available tools in multiclass metabolomics. MultiClassMetabo can be accessed at http://idrblab.cn/multiclassmetabo/.
Collapse
Affiliation(s)
- Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shuman Chen
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenyu Jiang
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lan Mi
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiarui Liu
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yu Hu
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinglai Ji
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jun Wang
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Yin J, Chen Z, You N, Li F, Zhang H, Xue J, Ma H, Zhao Q, Yu L, Zeng S, Zhu F. VARIDT 3.0: the phenotypic and regulatory variability of drug transporter. Nucleic Acids Res 2024; 52:D1490-D1502. [PMID: 37819041 PMCID: PMC10767864 DOI: 10.1093/nar/gkad818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
The phenotypic and regulatory variability of drug transporter (DT) are vital for the understanding of drug responses, drug-drug interactions, multidrug resistances, and so on. The ADME property of a drug is collectively determined by multiple types of variability, such as: microbiota influence (MBI), transcriptional regulation (TSR), epigenetics regulation (EGR), exogenous modulation (EGM) and post-translational modification (PTM). However, no database has yet been available to comprehensively describe these valuable variabilities of DTs. In this study, a major update of VARIDT was therefore conducted, which gave 2072 MBIs, 10 610 TSRs, 46 748 EGRs, 12 209 EGMs and 10 255 PTMs. These variability data were closely related to the transportation of 585 approved and 301 clinical trial drugs for treating 572 diseases. Moreover, the majority of the DTs in this database were found with multiple variabilities, which allowed a collective consideration in determining the ADME properties of a drug. All in all, VARIDT 3.0 is expected to be a popular data repository that could become an essential complement to existing pharmaceutical databases, and is freely accessible without any login requirement at: https://idrblab.org/varidt/.
Collapse
Affiliation(s)
- Jiayi Yin
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Nanxin You
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- The Children's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jia Xue
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hui Ma
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingwei Zhao
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
12
|
Lian X, Zhang Y, Zhou Y, Sun X, Huang S, Dai H, Han L, Zhu F. SingPro: a knowledge base providing single-cell proteomic data. Nucleic Acids Res 2024; 52:D552-D561. [PMID: 37819028 PMCID: PMC10767818 DOI: 10.1093/nar/gkad830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Single-cell proteomics (SCP) has emerged as a powerful tool for detecting cellular heterogeneity, offering unprecedented insights into biological mechanisms that are masked in bulk cell populations. With the rapid advancements in AI-based time trajectory analysis and cell subpopulation identification, there exists a pressing need for a database that not only provides SCP raw data but also explicitly describes experimental details and protein expression profiles. However, no such database has been available yet. In this study, a database, entitled 'SingPro', specializing in single-cell proteomics was thus developed. It was unique in (a) systematically providing the SCP raw data for both mass spectrometry-based and flow cytometry-based studies and (b) explicitly describing experimental detail for SCP study and expression profile of any studied protein. Anticipating a robust interest from the research community, this database is poised to become an invaluable repository for OMICs-based biomedical studies. Access to SingPro is unrestricted and does not mandate a login at: http://idrblab.org/singpro/.
Collapse
Affiliation(s)
- Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai 315211, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai 315211, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
13
|
Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F. TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res 2024; 52:D1465-D1477. [PMID: 37713619 PMCID: PMC10767903 DOI: 10.1093/nar/gkad751] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Target discovery is one of the essential steps in modern drug development, and the identification of promising targets is fundamental for developing first-in-class drug. A variety of methods have emerged for target assessment based on druggability analysis, which refers to the likelihood of a target being effectively modulated by drug-like agents. In the therapeutic target database (TTD), nine categories of established druggability characteristics were thus collected for 426 successful, 1014 clinical trial, 212 preclinical/patented, and 1479 literature-reported targets via systematic review. These characteristic categories were classified into three distinct perspectives: molecular interaction/regulation, human system profile and cell-based expression variation. With the rapid progression of technology and concerted effort in drug discovery, TTD and other databases were highly expected to facilitate the explorations of druggability characteristics for the discovery and validation of innovative drug target. TTD is now freely accessible at: https://idrblab.org/ttd/.
Collapse
Affiliation(s)
- Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Donghai Zhao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yuan Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yunqing Qiu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
14
|
Fu T, Zeng S, Zheng Q, Zhu F. The Important Role of Transporter Structures in Drug Disposition, Efficacy, and Toxicity. Drug Metab Dispos 2023; 51:1316-1323. [PMID: 37295948 DOI: 10.1124/dmd.123.001275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters are critical determinants of drug disposition, clinical efficacy, and toxicity as they specifically mediate the influx and efflux of various substrates and drugs. ABC transporters can modulate the pharmacokinetics of many drugs via mediating the translocation of drugs across biologic membranes. SLC transporters are important drug targets involved in the uptake of a broad range of compounds across the membrane. However, high-resolution experimental structures have been reported for a very limited number of transporters, which limits the study of their physiologic functions. In this review, we collected structural information on ABC and SLC transporters and described the application of computational methods in structure prediction. Taking P-glycoprotein (ABCB1) and serotonin transporter (SLC6A4) as examples, we assessed the pivotal role of structure in transport mechanisms, details of ligand-receptor interactions, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms. The data collected contributes toward safer and more effective pharmacological treatments. SIGNIFICANCE STATEMENT: The experimental structure of ATP-binding cassette and solute carrier transporters was collected, and the application of computational methods in structure prediction was described. P-glycoprotein and serotonin transporter were used as examples to reveal the pivotal role of structure in transport mechanisms, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Su Zeng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Qingchuan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| |
Collapse
|