1
|
Xu S, Liu Y, Lee H, Li W. Neural interfaces: Bridging the brain to the world beyond healthcare. EXPLORATION (BEIJING, CHINA) 2024; 4:20230146. [PMID: 39439491 PMCID: PMC11491314 DOI: 10.1002/exp.20230146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings and communicate. By recording and decoding neural signals, these interfaces facilitate direct connections between the brain and external devices, enabling seamless information exchange and shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, and algorithmic design. Electrophysiological crosstalk and the mismatch between electrode rigidity and tissue flexibility further complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer interfaces, while promising for mood regulation and cognitive enhancement, are limited by decoding accuracy and the adaptability of user interfaces. This perspective outlines these challenges and discusses the progress in neural interfaces, contrasting non-invasive and invasive approaches, and explores the dynamics between stimulation and direct interfacing. Emphasis is placed on applications beyond healthcare, highlighting the need for implantable interfaces with high-resolution recording and stimulation capabilities.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Yang Liu
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hyunjin Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Weidong Li
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
2
|
Oldroyd P, Hadwe SE, Barone DG, Malliaras GG. Thin-film implants for bioelectronic medicine. MRS BULLETIN 2024; 49:1045-1058. [PMID: 39397879 PMCID: PMC11469980 DOI: 10.1557/s43577-024-00786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 10/15/2024]
Abstract
This article is based on the MRS Mid-Career Researcher Award "for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine" presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Meeting in San Francisco, Calif.Bioelectronic medicine offers a revolutionary approach to treating disease by stimulating the body with electricity. While current devices show safety and efficacy, limitations, including bulkiness, invasiveness, and scalability, hinder their wider application. Thin-film implants promise to overcome these limitations. Made using microfabrication technologies, these implants conform better to neural tissues, reduce tissue damage and foreign body response, and provide high-density, multimodal interfaces with the body. This article explores how thin-film implants using organic materials and novel designs may contribute to disease management, intraoperative monitoring, and brain mapping applications. Additionally, the technical challenges to be addressed for this technology to succeed are discussed. Graphical abstract
Collapse
Affiliation(s)
- Poppy Oldroyd
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El Hadwe
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Khoury F, Saleh S, Badawe H, Obeid M, Khraiche M. Inkjet-Printed, Flexible Organic Electrochemical Transistors for High-Performance Electrocorticography Recordings. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39146224 PMCID: PMC11492168 DOI: 10.1021/acsami.4c07359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Organic electrochemical transistors (OECTs) have emerged as powerful tools for biosignal amplification, including electrocorticography (ECoG). However, their widespread application has been limited by the complexities associated with existing fabrication techniques, restricting accessibility and scalability. Here, we introduce a novel all-planar, all-printed high-performance OECT device that significantly enhances the accuracy and sensitivity of ECoG recordings. Achieved through an innovative three-step drop-on-demand inkjet printing process on flexible substrates, our device offers a rapid response time of 0.5 ms, a compact channel area of 1950 μm2, and is characterized by a transconductance of 11 mS. This process not only simplifies integration but also reduces costs. Our optimized in-plane gate voltage control facilitates operation at peak transconductance, which elevates the signal-to-noise ratio (SNR) by up to 133%. In vivo evaluations in a rat model of seizure demonstrate the device's performance in recording distinct electrographic phases, surpassing the capabilities of PEDOT:PSS-coated gold-based ultralow impedance passive electrodes, achieving a high SNR of 48 db. Our results underscore the potential of Inkjet-printed OECTs in advancing the accessibility and accuracy of diagnostic tools that could enhance patient care by facilitating timely detection of neurological conditions.
Collapse
Affiliation(s)
- Fadi Khoury
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sahera Saleh
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Heba Badawe
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Makram Obeid
- Stark
Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Massoud Khraiche
- Neural
Engineering and NanoBiosensors Group, Biomedical Engineering Program,
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
4
|
Salvigni L, Nayak PD, Koklu A, Arcangeli D, Uribe J, Hama A, Silva R, Hidalgo Castillo TC, Griggs S, Marks A, McCulloch I, Inal S. Reconfiguration of organic electrochemical transistors for high-accuracy potentiometric sensing. Nat Commun 2024; 15:6499. [PMID: 39090103 PMCID: PMC11294360 DOI: 10.1038/s41467-024-50792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Organic electrochemical transistors have emerged as a promising alternative to traditional 2/3 electrode setups for sensing applications, offering in-situ transduction, electrochemical amplification, and noise reduction. Several of these devices are designed to detect potentiometric-derived signals. However, potentiometric sensing should be performed under open circuit potential conditions, allowing the system to reach thermodynamic equilibrium. This criterion is not met by conventional organic electrochemical transistors, where voltages or currents are directly applied to the sensing interface, that is, the gate electrode. In this work, we introduce an organic electrochemical transistor sensing configuration called the potentiometric‑OECT (pOECT), which maintains the sensing electrode under open circuit potential conditions. The pOECT exhibits a higher response than the 2-electrode setup and offers greater accuracy, response, and stability compared to conventional organic electrochemical transistors. Additionally, it allows for the implementation of high-impedance electrodes as gate/sensing surfaces, all without compromising the overall device size.
Collapse
Affiliation(s)
- Luca Salvigni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Prem Depan Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Anil Koklu
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Danilo Arcangeli
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Johana Uribe
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Raphaela Silva
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Sophie Griggs
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Adam Marks
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Hu Z, Hu Y, Huang L, Zhong W, Zhang J, Lei D, Chen Y, Ni Y, Liu Y. Recent Progress in Organic Electrochemical Transistor-Structured Biosensors. BIOSENSORS 2024; 14:330. [PMID: 39056606 PMCID: PMC11274720 DOI: 10.3390/bios14070330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The continued advancement of organic electronic technology will establish organic electrochemical transistors as pivotal instruments in the field of biological detection. Here, we present a comprehensive review of the state-of-the-art technology and advancements in the use of organic electrochemical transistors as biosensors. This review provides an in-depth analysis of the diverse modification materials, methods, and mechanisms utilized in organic electrochemical transistor-structured biosensors (OETBs) for the selective detection of a wide range of target analyte encompassing electroactive species, electro-inactive species, and cancer cells. Recent advances in OETBs for use in sensing systems and wearable and implantable applications are also briefly introduced. Finally, challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Zhuotao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yingchao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Lu Huang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Zhong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Dengyun Lei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yayi Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| |
Collapse
|
6
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
7
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
8
|
Kelly AR, Glover DJ. Information Transmission through Biotic-Abiotic Interfaces to Restore or Enhance Human Function. ACS APPLIED BIO MATERIALS 2024; 7:3605-3628. [PMID: 38729914 DOI: 10.1021/acsabm.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Advancements in reliable information transfer across biotic-abiotic interfaces have enabled the restoration of lost human function. For example, communication between neuronal cells and electrical devices restores the ability to walk to a tetraplegic patient and vision to patients blinded by retinal disease. These impactful medical achievements are aided by tailored biotic-abiotic interfaces that maximize information transfer fidelity by considering the physical properties of the underlying biological and synthetic components. This Review develops a modular framework to define and describe the engineering of biotic and abiotic components as well as the design of interfaces to facilitate biotic-abiotic information transfer using light or electricity. Delineating the properties of the biotic, interface, and abiotic components that enable communication can serve as a guide for future research in this highly interdisciplinary field. Application of synthetic biology to engineer light-sensitive proteins has facilitated the control of neural signaling and the restoration of rudimentary vision after retinal blindness. Electrophysiological methodologies that use brain-computer interfaces and stimulating implants to bypass spinal column injuries have led to the rehabilitation of limb movement and walking ability. Cellular interfacing methodologies and on-chip learning capability have been made possible by organic transistors that mimic the information processing capacity of neurons. The collaboration of molecular biologists, material scientists, and electrical engineers in the emerging field of biotic-abiotic interfacing will lead to the development of prosthetics capable of responding to thought and experiencing touch sensation via direct integration into the human nervous system. Further interdisciplinary research will improve electrical and optical interfacing technologies for the restoration of vision, offering greater visual acuity and potentially color vision in the near future.
Collapse
Affiliation(s)
- Alexander R Kelly
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Li P, Sun W, Li J, Chen JP, Wang X, Mei Z, Jin G, Lei Y, Xin R, Yang M, Xu J, Pan X, Song C, Deng XY, Lei X, Liu K, Wang X, Zheng Y, Zhu J, Lv S, Zhang Z, Dai X, Lei T. N-type semiconducting hydrogel. Science 2024; 384:557-563. [PMID: 38696573 DOI: 10.1126/science.adj4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024]
Abstract
Hydrogels are an attractive category of biointerfacing materials with adjustable mechanical properties, diverse biochemical functions, and good ionic conductivity. Despite these advantages, their application in electronics has been restricted because of their lack of semiconducting properties, and they have traditionally only served as insulators or conductors. We developed single- and multiple-network hydrogels based on a water-soluble n-type semiconducting polymer, endowing conventional hydrogels with semiconducting capabilities. These hydrogels show good electron mobilities and high on/off ratios, enabling the fabrication of complementary logic circuits and signal amplifiers with low power consumption and high gains. We demonstrate that hydrogel electronics with good bioadhesive and biocompatible interface can sense and amplify electrophysiological signals with enhanced signal-to-noise ratios.
Collapse
Affiliation(s)
- Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Wenxi Sun
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiulong Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ju-Peng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zi Mei
- School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Guanyu Jin
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuqiu Lei
- College of Engineering, Peking University, Beijing 100871, China
| | - Ruiyun Xin
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Mo Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jingcao Xu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Cheng Song
- College of Engineering, Peking University, Beijing 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Kai Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuting Zheng
- College of Engineering, Peking University, Beijing 100871, China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shixian Lv
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaochuan Dai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Zhou C, Tian Y, Li G, Ye Y, Gao L, Li J, Liu Z, Su H, Lu Y, Li M, Zhou Z, Wei X, Qin L, Tao TH, Sun L. Through-polymer, via technology-enabled, flexible, lightweight, and integrated devices for implantable neural probes. MICROSYSTEMS & NANOENGINEERING 2024; 10:54. [PMID: 38654844 PMCID: PMC11035623 DOI: 10.1038/s41378-024-00691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
In implantable electrophysiological recording systems, the headstage typically comprises neural probes that interface with brain tissue and integrated circuit chips for signal processing. While advancements in MEMS and CMOS technology have significantly improved these components, their interconnection still relies on conventional printed circuit boards and sophisticated adapters. This conventional approach adds considerable weight and volume to the package, especially for high channel count systems. To address this issue, we developed a through-polymer via (TPV) method inspired by the through-silicon via (TSV) technique in advanced three-dimensional packaging. This innovation enables the vertical integration of flexible probes, amplifier chips, and PCBs, realizing a flexible, lightweight, and integrated device (FLID). The total weight of the FLIDis only 25% that of its conventional counterparts relying on adapters, which significantly increased the activity levels of animals wearing the FLIDs to nearly match the levels of control animals without implants. Furthermore, by incorporating a platinum-iridium alloy as the top layer material for electrical contact, the FLID realizes exceptional electrical performance, enabling in vivo measurements of both local field potentials and individual neuron action potentials. These findings showcase the potential of FLIDs in scaling up implantable neural recording systems and mark a significant advancement in the field of neurotechnology.
Collapse
Grants
- This work was partially supported by the National Key R & D Program of China (Grant Nos. 2021ZD0201600, 2022YFF0706504, 2022ZD0209300, 2019YFA0905200, 2021YFC2501500, 2021YFF1200700, 2022ZD0212300), National Natural Science Foundation of China (Grant No. 61974154), Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-JSC024), Shanghai Pilot Program for Basic Research-Chinese Academy of Science, Shanghai Branch (Grant No. JCYJ-SHFY-2022-01 and JCYJ-SHFY-2022-0xx), Shanghai Municipal Science and Technology Major Project (Grant No. 2021SHZDZX), CAS Pioneer Hundred Talents Program, Shanghai Pujiang Program (Grant Nos. 21PJ1415100, 19PJ1410900), the Science and Technology Commission Foundation of Shanghai (Nos. 21JM0010200 and 21142200300), Shanghai Rising-Star Program (Grant No. 22QA1410900), Shanghai Sailing Program (No. 22YF1454700), the Innovative Research Team of High-level Local Universities in Shanghai, the Jiangxi Province 03 Special Project and 5G Project (Grant No. 20212ABC03W07), Fund for Central Government in Guidance of Local Science and Technology Development (Grant No. 20201ZDE04013), Special Fund for Science and Technology Innovation Strategy of Guangdong Province (Grant Nos. 2021B0909060002, 2021B0909050004).
Collapse
Affiliation(s)
- Cunkai Zhou
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ye Tian
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Ye
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lusha Gao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiazhi Li
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ziwei Liu
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haoyang Su
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yunxiao Lu
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Li
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhitao Zhou
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoling Wei
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lunming Qin
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Tiger H. Tao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Neuroxess Co., Ltd. (Jiangxi), Nanchang, Jiangxi China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Liuyang Sun
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Bai J, Liu D, Tian X, Wang Y, Cui B, Yang Y, Dai S, Lin W, Zhu J, Wang J, Xu A, Gu Z, Zhang S. Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. SCIENCE ADVANCES 2024; 10:eadl1856. [PMID: 38640241 PMCID: PMC11029813 DOI: 10.1126/sciadv.adl1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.
Collapse
Affiliation(s)
- Jing Bai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yilin Yang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wensheng Lin
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jixiang Zhu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
12
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
13
|
Jo IY, Jeong D, Moon Y, Lee D, Lee S, Choi JG, Nam D, Kim JH, Cho J, Cho S, Kim DY, Ahn H, Kim BJ, Yoon MH. High-Performance Organic Electrochemical Transistors Achieved by Optimizing Structural and Energetic Ordering of Diketopyrrolopyrrole-Based Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307402. [PMID: 37989225 DOI: 10.1002/adma.202307402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/15/2023] [Indexed: 11/23/2023]
Abstract
For optimizing steady-state performance in organic electrochemical transistors (OECTs), both molecular design and structural alignment approaches must work in tandem to minimize energetic and microstructural disorders in polymeric mixed ionic-electronic conductor films. Herein, a series of poly(diketopyrrolopyrrole)s bearing various lengths of aliphatic-glycol hybrid side chains (PDPP-mEG; m = 2-5) is developed to achieve high-performance p-type OECTs. PDPP-4EG polymer with the optimized length of side chains exhibits excellent crystallinity owing to enhanced lamellar and backbone interactions. Furthermore, the improved structural ordering in PDPP-4EG films significantly decreases trap state density and energetic disorder. Consequently, PDPP-4EG-based OECT devices produce a mobility-volumetric capacitance product ([µC*]) of 702 F V-1 cm-1 s-1 and a hole mobility of 6.49 ± 0.60 cm2 V-1 s-1 . Finally, for achieving the optimal structural ordering along the OECT channel direction, a floating film transfer method is employed to reinforce the unidirectional orientation of polymer chains, leading to a substantially increased figure-of-merit [µC*] to over 800 F V-1 cm-1 s-1 . The research demonstrates the importance of side chain engineering of polymeric mixed ionic-electronic conductors in conjunction with their anisotropic microstructural optimization to maximize OECT characteristics.
Collapse
Affiliation(s)
- Il-Young Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yina Moon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dongchan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jun-Gyu Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Donghyeon Nam
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hwan Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - HyungJu Ahn
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
14
|
Wu W, Feng K, Wang Y, Wang J, Huang E, Li Y, Jeong SY, Woo HY, Yang K, Guo X. Selenophene Substitution Enabled High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors and Glucose Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310503. [PMID: 37961011 DOI: 10.1002/adma.202310503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Indexed: 11/15/2023]
Abstract
High-performance n-type polymeric mixed ionic-electronic conductors (PMIECs) are essential for realizing organic electrochemical transistors (OECTs)-based low-power complementary circuits and biosensors, but their development still remains a great challenge. Herein, by devising two novel n-type polymers (f-BTI2g-SVSCN and f-BSeI2g-SVSCN) containing varying selenophene contents together with their thiophene-based counterpart as the control, it is demonstrated that gradually increasing selenophene loading in polymer backbones can simultaneously yield lowered lowest unoccupied molecular orbital levels, boosted charge-transport properties, and improved ion-uptake capabilities. Therefore, a remarkable volumetric capacitance (C*) of 387.2 F cm-3 and a state-of-the-art OECT electron mobility (µe,OECT ) of 0.48 cm2 V-1 s-1 are synchronously achieved for f-BSeI2g-SVSCN having the highest selenophene content, yielding an unprecedented geometry-normalized transconductance (gm,norm ) of 71.4 S cm-1 and record figure of merit (µC*) value of 191.2 F cm-1 V-1 s-1 for n-type OECTs. Thanks to such excellent performance of f-BSeI2g-SVSCN-based OECTs, a glucose sensor with a remarkably low detection limit of 10 nMm and decent selectivity is further implemented, demonstrating the power of selenophene substitution strategy in enabling high-performance n-type PMIECs for biosensing applications.
Collapse
Affiliation(s)
- Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410080, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
15
|
Garland NT, Kaveti R, Bandodkar AJ. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303197. [PMID: 37358398 DOI: 10.1002/adma.202303197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Recent developments in wearable and implanted devices have resulted in numerous, unprecedented capabilities that generate increasingly detailed information about a user's health or provide targeted therapy. However, options for powering such systems remain limited to conventional batteries which are large and have toxic components and as such are not suitable for close integration with the human body. This work provides an in-depth overview of biofluid-activated electrochemical energy devices, an emerging class of energy sources judiciously designed for biomedical applications. These unconventional energy devices are composed of biocompatible materials that harness the inherent chemistries of various biofluids to produce useable electrical energy. This work covers examples of such biofluid-activated energy devices in the form of biofuel cells, batteries, and supercapacitors. Advances in materials, design engineering, and biotechnology that form the basis for high-performance, biofluid-activated energy devices are discussed. Innovations in hybrid manufacturing and heterogeneous integration of device components to maximize power output are also included. Finally, key challenges and future scopes of this nascent field are provided.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|