1
|
Bariki R, Sahoo SK, Pati AR, Pradhan SK, Panda S, Nayak SK, Mishra BG. MOF-Derived Hollow C, N-Doped Co 3O 4 Dodecahedral Nanostructure Enwrapped with MgIn 2S 4 Nanosheets for Enhanced Photocatalytic N 2 Reduction. Inorg Chem 2024. [PMID: 39721050 DOI: 10.1021/acs.inorgchem.4c04746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Design of hierarchical hollow nanoheterostructure materials through interfacial and defect engineering is an innovative approach for achieving optimal charge separation dynamics and photon harvesting efficiency. Herein, we have described a facile technique to fabricate hollow MOF-derived C, N-doped-Co3O4 (C, N-Co3O4) dodecahedral particles enwrapped with MgIn2S4 nanosheets for enhanced N2 reduction performance. ZIF-67 was initially used as a sacrificial template to prepare hollow C, N-Co3O4 using a carbonization route followed by low-temperature calcination treatment. The controlled synthetic protocol not only led to nonmetal doping but also produced an interwoven carbon matrix that improved the photoelectron mobility. Density functional theory calculations further substantiated the creation of atomic defects through substitution of C at tetrahedral Co2+ sites and N at lattice O2- sites of the Co3O4 structure. C, N-Co3O4 was subsequently coupled with MgIn2S4 nanosheets to prepare the C, N-Co3O4/MgIn2S4 [C, N-CM (X)] p-n heterojunctions. The photocatalytic study revealed that the NH4+ ion production activity of the optimal C, N-CM (1:1) material (334 μmol g-1 h-1) was significantly higher (4-10 times) than that of pure components. The enhanced activity of the composite was ascribed to its distinct topological features, superior charge carrier dynamics, and creation of atomic defects that afforded a large number of surface-active sites.
Collapse
Affiliation(s)
- Ranjit Bariki
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir K Sahoo
- Department of Chemistry, Indian Institute of Technology, Dharwad 580007, Karnataka, India
| | - Aditya Ranjan Pati
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sibun Kumar Pradhan
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Saumyaranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Swagat Kumar Nayak
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Braja Gopal Mishra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
2
|
Zhou T, Xie Z, Luo H, Chen H, Li L, Chen M, Shi W. Collective Effect in Hierarchical Porous MOFs Combining Single Atoms and Nanoparticles for Enhanced CO 2 Photoreduction to CO. Inorg Chem 2024. [PMID: 39688543 DOI: 10.1021/acs.inorgchem.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Reasonable construction of atomically accurate photocatalysts is the key to building efficient photocatalytic systems. Herein, we propose a collective effects strategy that enables the consolidation of both cobalt single atoms (CoSAs) and nickel nanoparticles (NiNPs) in hierarchical porous MOFs for the foundational features for the preparation of high-performance photocatalysts. Among them, the optimal sample CoSAs/Al-bpydc/NiNPs achieved a CO generation rate of 12.8 mmol·g-1·h-1 and selectivity of 91% in 4 h. According to the experiment characterizations and theoretical simulations, we found that CoSAs facilitate CO2 adsorption and activation, while NiNPs promote hydrogen spillover and transfer of hydrogen protons to CoSAs, highlighting the collective effect of the catalytic system with multiple active sites. Most importantly, as a proof of concept, this performance enhancement strategy can also be applied to other hierarchically porous MOF photocatalysts, such as Al-bpdc, DUT-4, and UiO-67. This work provides new insight into the development of performance optimization of CO2 conversion photocatalysts through the ingenious design of collective catalytic sites.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongkai Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongyun Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongjing Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
3
|
Shi Z, Yang L, Lu Z, Han Q, Wu L, Wang L, Xiong Y, Ye J, Zou Z, Zhou Y. Comprehensive Insight into Indium Oxide‐Based Catalysts for CO 2 Hydrogenation: Thermal, Photo, and Photothermal Catalysis. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202409904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe conversion of carbon dioxide (CO2) into value‐added chemicals presents an innovative pathway for advancing the low‐carbon clean energy revolution, contributing significantly to CO2 emission reduction and resource utilization. Recently, In2O3‐based catalysts have emerged as a promising frontier in CO2 hydrogenation research. This review provides a comprehensive introduction of the latest advancements in the application of In2O3‐based catalysts across thermal, photocatalytic, and photothermal catalysis platforms. The review examines critical aspects such as structural properties, active sites, reaction mechanisms, performance enhancement, product impact, and the development of multi‐functional catalytic systems. Thermal Catalysis for CO2 hydrogenation involves the application of elevated temperatures to initiate and drive the hydrogenation reactions. Photocatalysis, on the other hand, harnesses light energy to facilitate these reactions. Among these approaches, photothermal catalysis has emerged as a particularly promising method for CO2 hydrogenation, offering several advantages over both thermal catalysis and photocatalysis. These advantages include more efficient energy utilization, a broader range of reaction conditions, enhanced synergistic effects, selective activation, and improved environmental sustainability. This review not only summarizes the current state of research in this field but also may provide critical insights and guidance for future studies aimed at advancing artificial carbon cycling processes.
Collapse
Affiliation(s)
- Zhisheng Shi
- School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Liuqing Yang
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 P. R. China
| | - Zhe Lu
- School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China
| | - Qiutong Han
- School of Physical and Mathematical Sciences State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Technology of University Nanjing Jiangsu 210009 P. R. China
| | - Linlin Wu
- College of Science Nanjing Forestry University Nanjing Jiangsu 210037 P. R. China
| | - Lu Wang
- School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Zhigang Zou
- School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China
- School of Physics National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures Eco‐Materials and Renewable Energy Research Center (ERERC) Jiangsu Key Laboratory for Nano Technology Nanjing University Nanjing Jiangsu 210093 P. R. China
| | - Yong Zhou
- School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China
- School of Physics National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures Eco‐Materials and Renewable Energy Research Center (ERERC) Jiangsu Key Laboratory for Nano Technology Nanjing University Nanjing Jiangsu 210093 P. R. China
| |
Collapse
|
4
|
Tang C, Rao H, Li S, She P, Qin JS. A Review of Metal-Organic Frameworks Derived Hollow-Structured Photocatalysts: Synthesis and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405533. [PMID: 39212632 DOI: 10.1002/smll.202405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a most important approach to addressing global energy shortages and environmental issues due to its environmentally friendly and sustainable properties. The key to realizing efficient photocatalysis relies on developing appropriate catalysts with high efficiency and chemical stability. Among various photocatalysts, Metal-organic frameworks (MOFs)-derived hollow-structured materials have drawn increased attention in photocatalysis based on advantages like more active sites, strong light absorption, efficient transfer of pho-induced charges, excellent stability, high electrical conductivity, and better biocompatibility. Specifically, MOFs-derived hollow-structured materials are widely utilized in photocatalytic CO2 reduction (CO2RR), hydrogen evolution (HER), nitrogen fixation (NRR), degradation, and other reactions. This review starts with the development story of MOFs, the commonly adopted synthesis strategies of MOFs-derived hollow materials, and the latest research progress in various photocatalytic applications are also introduced in detail. Ultimately, the challenges of MOFs-derived hollow-structured materials in practical photocatalytic applications are also prospected. This review holds great potential for developing more applicable and efficient MOFs-derived hollow-structured photocatalysts.
Collapse
Affiliation(s)
- Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Mao L, Liu J, Lin R, Xue J, Yang Y, Xu S, Li Q, Qian J. Tailoring the Compositions and Nanostructures of Trimetallic Prussian Blue Analog-Derived Carbides for Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402916. [PMID: 39226210 PMCID: PMC11558108 DOI: 10.1002/advs.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/01/2024] [Indexed: 09/05/2024]
Abstract
The electrochemical splitting of water for hydrogen production faces a major challenge due to its anodic oxygen evolution reaction (OER), necessitating research on the rational design and facile synthesis of OER catalysts to enhance catalytic activity and stability. This study proposes a ligand-induced MOF-on-MOF approach to fabricate various trimetallic MnFeCo-based Prussian blue analog (PBA) nanostructures. The addition of [Fe(CN)6]3- transforms them from cuboids with protruding corners (MnFeCoPBA-I) to core-shell configurations (MnFeCoPBA-II), and finally to hollow structures (MnFeCoPBA-III). After pyrolysis at 800 °C, they are converted into corresponding PBA-derived carbon nanomaterials, featuring uniformly dispersed Mn2Co2C nanoparticles. A comparative analysis demonstrates that the Fe addition enhances catalytic activity, while Mn-doped materials exhibit excellent stability. Specifically, the optimized MnFeCoNC-I-800 demonstrates outstanding OER performance in 1.0 m KOH solution, with an overpotential of 318 mV at 10 mA cm-2, maintaining stability for up to 150 h. Theoretical calculations elucidate synergistic interactions between Fe dopants and the Mn2Co2C matrix, reducing barriers for oxygen intermediates and improving intrinsic OER activity. These findings offer valuable insights into the structure-morphology relationships of MOF precursors, advancing the development of highly active and stable MOF-derived OER catalysts for practical applications.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Jie Liu
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Rong Lin
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Jinhang Xue
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Yuandong Yang
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Qipeng Li
- College of Chemistry and Chemical EngineeringZhaotong UniversityZhaotongYunnan657000P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| |
Collapse
|
6
|
Feng X, Zhou S, Liu J, Wu J, Wang J, Zhang W, Jiang Y, Liu Y, Zhang J, Lu X. Indium oxide-based Z-scheme hollow core-shell heterostructure with rich sulfur-vacancy for highly efficient light-driven splitting of water to produce clean energy. J Colloid Interface Sci 2024; 672:401-414. [PMID: 38850865 DOI: 10.1016/j.jcis.2024.05.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
Crafting an inorganic semiconductor heterojunction with defect engineering and morphology modulation is a strategic approach to produce clean energy by the highly efficient light-driven splitting of water. In this paper, a novel Z-scheme sulfur-vacancy containing Zn3In2S6 (Vs-Zn3In2S6) nanosheets/In2O3 hollow hexagonal prisms heterostructrue (Vs-ZIS6INO) was firstly constructed by an oil bath method, in which Vs-Zn3In2S6 nanosheets grew on the surfaces of In2O3 hollow hexagonal prisms to form a hollow core-shell structure. The obtained Vs-ZIS6INO heterostructrue exhibited much enhanced activity of the production of H2 and H2O2 by the light-driven water splitting. In particular, under visible light irradiation (λ > 420 nm), the rate of generation of H2 of Vs-ZIS6INO sample containing 30 wt% Vs-Zn3In2S6 (30Vs-ZIS6INO) could reach 3721 μmol g-1h-1, which was 87 and 6 times higher than those of Zn3In2S6 (43 μmol g-1h-1) and Vs-Zn3In2S6 (586 μmol g-1h-1), respectively. Meanwhile, 30Vs-ZIS6INO could exhibit the rate of H2O2 production of 483 μmol g-1h-1 through the dual pathways of indirect 2e- oxygen reduction (ORR) and water oxidation (WOR) without adding any sacrifice agents, far exceeding In2O3 (7 μmol g-1h-1) and Vs-Zn3In2S6 (58 μmol g-1h-1). The excellent photocatalytic activities of H2 and H2O2 generations of Vs-ZIS6INO sample might result from the synergistic effect of the sulfur vacancy, hollow core-shell structure, and Z-scheme heterostructure, which accelerated the electron delocalization, enhanced the absorption and conversion of solar energy, reduced the carrier diffusion distance, and ensured high REDOX ability. In addition, the possible photocatalytic mechanisms for the production of H2 and H2O2 were discussed in detail. This study provided a new idea and reference for constructing the novel and efficient inorganic semiconductor heterostructures by coordinating vacancy defect and morphology design to adequately utilize water splitting for the production of clean energy.
Collapse
Affiliation(s)
- Xintao Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shihan Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiaxing Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingbo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jundi Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenli Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoqing Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
7
|
Wang W, Yang K, Zhu Q, Zhang T, Guo L, Hu F, Zhong R, Wen X, Wang H, Qi J. MOFs-Based Materials with Confined Space: Opportunities and Challenges for Energy and Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311449. [PMID: 38738782 DOI: 10.1002/smll.202311449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ke Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Qinghan Zhu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Tingting Zhang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Feiyang Hu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaojing Wen
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Xia D, Lee C, Charpentier NM, Deng Y, Yan Q, Gabriel JP. Drivers and Pathways for the Recovery of Critical Metals from Waste-Printed Circuit Boards. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309635. [PMID: 38837685 PMCID: PMC11321694 DOI: 10.1002/advs.202309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/15/2024] [Indexed: 06/07/2024]
Abstract
The ever-increasing importance of critical metals (CMs) in modern society underscores their resource security and circularity. Waste-printed circuit boards (WPCBs) are particularly attractive reservoirs of CMs due to their gamut CM embedding and ubiquitous presence. However, the recovery of most CMs is out of reach from current metal-centric recycling industries, resulting in a flood loss of refined CMs. Here, 41 types of such spent CMs are identified. To deliver a higher level of CM sustainability, this work provides an insightful overview of paradigm-shifting pathways for CM recovery from WPCBs that have been developed in recent years. As a crucial starting entropy-decreasing step, various strategies of metal enrichment are compared, and the deployment of artificial intelligence (AI) and hyperspectral sensing is highlighted. Then, tailored metal recycling schemes are presented for the platinum group, rare earth, and refractory metals, with emphasis on greener metallurgical methods contributing to transforming CMs into marketable products. In addition, due to the vital nexus of CMs between the environment and energy sectors, the upcycling of CMs into electro-/photo-chemical catalysts for green fuel synthesis is proposed to extend the recycling chain. Finally, the challenges and outlook on this all-round upgrading of WPCB recycling are outlined.
Collapse
Affiliation(s)
- Dong Xia
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
| | - Carmen Lee
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Nicolas M. Charpentier
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| | - Yuemin Deng
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
- Ecologic France15 Avenue du CentreGuyancour78280France
| | - Qingyu Yan
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Jean‐Christophe P. Gabriel
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| |
Collapse
|
9
|
Gao ML, Liu S, Liu L, Han ZB. Superhydrophobic MOF/polymer composite with hierarchical porosity for boosting catalytic performance in an humid environment. NANOSCALE 2024; 16:10637-10644. [PMID: 38738309 DOI: 10.1039/d4nr00948g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The poor hydrostability of most reported metal-organic frameworks (MOFs) has become a daunting challenge in their practical applications. Recently, MOFs combined with multifunctional polymers can act as a functional platform and exhibit unique catalytic performance; they can not only inherit the outstanding properties of the two components but also offer unique synergistic effects. Herein, an original porous polymer-confined strategy has been developed to prepare a superhydrophobic MOF composite to significantly enhance its moisture or water resistance. The selective nucleation and growth of MOF nanocrystals confined in the pore of PDVB-vim are closely related to the structure-directing and coordination-modulating properties of PDVB-vim. The resultant MOF/PDVB-vim composite not only produces superior superhydrophobicity without significantly disturbing the original features but also exhibits a novel catalytic activity in the Friedel-Crafts alkylation reaction of indoles with trans-β-nitrostyrene because of the accessible sites and synergistic effects.
Collapse
Affiliation(s)
- Ming-Liang Gao
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuo Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
10
|
Ye JQ, Xu SY, Liang Q, Dai YZ, He MY. Metal-Organic Frameworks-Derived Nanocarbon Materials and Nanometal Oxides for Photocatalytic Applications. Chem Asian J 2024; 19:e202400161. [PMID: 38500400 DOI: 10.1002/asia.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Harnessing low-density solar energy and converting it into high-density chemical energy through photocatalysis has emerged as a promising avenue for the production of chemicals and remediation of environmental pollution, which contributes to alleviating the overreliance on fossil fuels. In recent years, metal-organic frameworks (MOFs) have gained widespread application in the field of photocatalysis due to their photostability, tunable structures, and responsiveness in the visible light range. However, most MOFs exhibit relatively low response to light, limiting their practical applications. MOFs-derived nanomaterials not only retain the inherent advantages of pristine MOFs but also show enhanced light adsorption and responsiveness. This review categorizes and summarizes MOFs-derived nanomaterials, including nanocarbons and nanometal oxides, providing representative examples for the synthetic strategies of each category. Subsequently, the recent research progress on MOFs-derived materials in photocatalytic applications are systematically introduced, specifically in the areas of photocatalytic water splitting to H2, photocatalytic CO2 reduction, and photocatalytic water treatment. The corresponding mechanisms involved in each photocatalytic reaction are elaborated in detail. Finally, the review discusses the challenges and further directions faced by MOFs-derived nanomaterials in the field of photocatalysis, highlighting their potential role in advancing sustainable energy production and environmental remediation.
Collapse
Affiliation(s)
- Jun-Qing Ye
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shu-Ying Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Qian Liang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yan-Zi Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
11
|
Mao L, Qian J. Interfacial Engineering of Heterogeneous Reactions for MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308732. [PMID: 38072778 DOI: 10.1002/smll.202308732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
Metal-organic frameworks (MOFs), as a subclass of porous crystalline materials with unique structures and multifunctional properties, play a pivotal role in various research domains. In recent years, significant attention has been directed toward composite materials based on MOFs, particularly MOF-on-MOF heterostructures. Compared to individual MOF materials, MOF-on-MOF structures harness the distinctive attributes of two or more different MOFs, enabling synergistic effects and allowing for the tailored design of diverse multilayered architectures to expand their application scope. However, the rational design and facile synthesis of MOF-on-MOF composite materials are in principle challenging due to the structural diversity and the intricate interfaces. Hence, this review primarily focuses on elucidating the factors that influence their interfacial growth, with a specific emphasis on the interfacial engineering of heterogeneous reactions, in which MOF-on-MOF hybrids can be conveniently obtained by using pre-fabricated MOF precursors. These factors are categorized as internal and external elements, encompassing inorganic metals, organic ligands, lattice matching, nucleation kinetics, thermodynamics, etc. Meanwhile, these intriguing MOF-on-MOF materials offer a wide range of advantages in various application fields, such as adsorption, separation, catalysis, and energy-related applications. Finally, this review highlights current complexities and challenges while providing a forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
12
|
Chen Y, Han D, Wang Z, Gu F. Interface Defects and Carrier Regulation in MOF-Derived Co 3O 4/In 2O 3 Composite Materials for Enhanced Selective Detection of HCHO. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659088 DOI: 10.1021/acsami.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Gas sensors for real-time monitoring of low HCHO concentrations have promising applications in the field of health protection and air treatment, and this work reports a novel resistive gas sensor with high sensitivity and selectivity to HCHO. The MOF-derived hollow In2O3 was mixed with ZIF-67(Co) and calcined twice to obtain a hollow Co3O4/In2O3 (hereafter collectively termed MZO-6) composite enriched with oxygen vacancies, and tests such as XPS and EPR proved that the strong interfacial electronic coupling increased the oxygen vacancies. The gas-sensitive test results show that the hollow composite MZO-6 with abundant oxygen vacancies has a higher response value (11,003) to 10 ppm of HCHO and achieves a fast response/recovery time (11/181 s) for HCHO at a lower operating temperature (140 °C). The MZO-6 material significantly enhances the selectivity to HCHO and reduces the interference of common pollutant gases such as ethanol, acetone, and xylene. There is no significant fluctuation of resistance and response values in the 30-day long-term stability test, and the material has good stability. The synergistic effect of the heterostructure and oxygen vacancies altered the formaldehyde adsorption intermediate pathway and reduced the reaction activation energy, enhancing the HCHO responsiveness and selectivity of the MZO-6 material.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Bao WL, Kuai J, Gao HY, Zheng MQ, Sun ZH, He MY, Chen Q, Zhang ZH. Ionic liquid post-modified carboxylate-rich MOFs for efficient catalytic CO 2 cycloaddition under solvent-free conditions. Dalton Trans 2024; 53:6215-6223. [PMID: 38483279 DOI: 10.1039/d4dt00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The synthesis of cyclic carbonates through cycloaddition reactions between epoxides and carbon dioxide (CO2) is an important industrial process. Metal-Organic Frameworks (MOFs) have functional and ordered pore structures, making them attractive catalysts for converting gas molecules into valuable products. One approach to enhance the catalytic activity of MOFs in CO2 cycloaddition reactions is to create open metal sites within MOFs. In this study, the amino-functionalized rare earth Gd-MOF (Gd-TPTC-NH2) and its ionic liquid composite catalysts (Gd-TPTC-NH-[BMIM]Br) were synthesized using 2'-amino-[1,1':4',1''-terphenyl]-3,3'',5,5''-tetracarboxylic acid (H4TPTC-NH2) as the ligand. The catalytic performance of these two catalysts was observed in the cycloaddition reaction of CO2 and epoxides. Under the optimized reaction conditions, Gd-TPTC-NH-[BMIM]Br can effectively catalyze the cycloaddition reaction of a variety of epoxide substrates with good to excellent yields of cyclic carbonate products. Comparatively, epichlorohydrin and epibromohydrin, which possess halogen substituents, promote higher yields of cyclic carbonates due to the electron-withdrawing nature of Cl and Br substituents. Additionally, the Gd-TPTC-NH-[BMIM]Br catalyst demonstrated good recyclability and reproducibility, maintaining its catalytic activity without any changes in its structure or properties after five reuse cycles.
Collapse
Affiliation(s)
- Wen-Li Bao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Jie Kuai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Hai-Yang Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Meng-Qi Zheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Zhong-Hua Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
14
|
Wagassa AN, Bansiwal A, Shifa TA, Zereffa EA. Ce 4+-Substituted Ni-Al mixed oxide: fluoride adsorption performance and reusability. RSC Adv 2024; 14:1229-1238. [PMID: 38174266 PMCID: PMC10762292 DOI: 10.1039/d3ra07690c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, Ce4+-doped Ni-Al mixed oxides (NACO) were synthesized and comprehensively characterized for their potential application in fluoride adsorption. NACOs were examined using Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM), revealing a sheet-like morphology with a nodular appearance. X-ray diffraction (XRD) analysis confirmed the formation of mixed oxides of cubic crystal structure, with characteristic planes (111), (200), and (220) at 2θ values of 37.63°, 43.61°, and 63.64°, respectively. Further investigations using X-ray Photoelectron Spectroscopy (XPS) identified the presence of elements such as Ni, Al, Ce, and O with oxidation states +2, +3, +4, and -2, respectively. The Brunauer-Emmett-Teller (BET) analysis indicated that NACO followed a type IV physisorption isotherm, suggesting favorable surface adsorption characteristics. The adsorption kinetics was studied, and the experimental data exhibited a good suit to both pseudo-first order and pseudo-second order, as indicated by high R2 values. Moreover, the Freundlich isotherm model demonstrated a good fit to the experimental data. The result also revealed that NACO has a maximum capacity for adsorption (qmax) of 132 mg g-1. Thermodynamic studies showed that fluoride adsorption onto NACO was feasible and spontaneous. Additionally, NACO exhibited excellent regeneration capabilities, as evidenced by a remarkable 75.71% removal efficiency at the sixth regeneration stage, indicating sustained adsorption capacity even after multiple regeneration cycles. Overall, NACOs displayed promising characteristics for fluoride adsorption, making them potential candidates for efficient and sustainable water treatment technologies.
Collapse
Affiliation(s)
- Ararso Nagari Wagassa
- CSIR-National Environmental Engineering Institute Nehru Marg Nagpur 440020 India
- Department of Applied Chemistry, Adama Science and Technology University, Adama P.O. Box 1888 Ethiopia
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Institute Nehru Marg Nagpur 440020 India
| | - Tofik Ahmed Shifa
- Department of Molecular Science and Nanosystem, Ca' Foscari University Venice Via Torino 155 30172 Venezia Mestre Italy
| | - Enyew Amare Zereffa
- Department of Applied Chemistry, Adama Science and Technology University, Adama P.O. Box 1888 Ethiopia
| |
Collapse
|
15
|
Chai L, Song J, Kumar A, Miao R, Sun Y, Liu X, Yasin G, Li X, Pan J. Bimetallic-MOF Derived Carbon with Single Pt Anchored C4 Atomic Group Constructing Super Fuel Cell with Ultrahigh Power Density And Self-Change Ability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308989. [PMID: 37966064 DOI: 10.1002/adma.202308989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Pursuing high power density with low platinum catalysts loading is a huge challenge for developing high-performance fuel cells (FCs). Herein, a new super fuel cell (SFC) is proposed with ultrahigh output power via specific electric double-layer capacitance (EDLC) + oxygen reduction reaction (ORR) parallel discharge, which is achieved using the newly prepared catalyst, single-atomic platinum on bimetallic metal-organic framework (MOF)-derived hollow porous carbon nanorods (PtSA /HPCNR). The PtSA-1.74 /HPCNR-based SFC has a 3.4-time higher transient specific power density and 13.3-time longer discharge time with unique in situ self-charge and energy storage ability than 20% Pt/C-based FCs. X-ray absorption fine structure, aberration-corrected high-angle annular dark-field scanning transmission electron microscope, and density functional theory calculations demonstrate that the synergistic effect of Pt single-atoms anchored on carbon defects significantly boosts its electron transfer, ORR catalytic activity, durability, and rate performance, realizing rapid " ORR+EDLC" parallel discharge mechanism to overcome the sluggish ORR process of traditional FCs. The promising SFC leads to a new pathway to boost the power density of FCs with extra-low Pt loading.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinlu Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anuj Kumar
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rui Miao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ghulam Yasin
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, 710048, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
16
|
Abazari R, Sanati S, Li N, Qian J. Fluorinated Metal-Organic Frameworks with Dual-Functionalized Linkers to Enhance Photocatalytic H 2 Evolution and High Water Adsorption. Inorg Chem 2023; 62:18680-18688. [PMID: 37907390 DOI: 10.1021/acs.inorgchem.3c03052] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photocatalytic H2 evolution has recently attracted much attention due to the reduction of nonrenewable energy sources and the increasing demand for renewable sustainable energies. Meanwhile, metal-organic frameworks (MOFs) are emerging potential photocatalysts due to their structural adaptability, porous configuration, several active sites, and a wide range of performance. Nevertheless, there are still limitations in the photocatalytic H2 evolution reaction of MOFs with higher charge recombination rates. Herein, a copper-organic framework with dual-functionalized linkers {[Cu2(L)(H2O)2]·(5DMF)(4H2O)}n (fluorinated MOF(Cu)-NH2; H4L = 3,5-bis(2,4-dicarboxylic acid)-4-(trifluoromethyl)aniline) and with a rare 2-nodal 4,12-connected shp topology has been synthesized by a ligand-functionalization strategy and evaluated for the photocatalytic production of H2 to overcome this issue. According to the photocatalytic H2 evolution results, fluorinated MOF(Cu)-NH2 showed a hydrogen evolution rate of 63.64 mmol·g-1·h-1 exposed to light irradiation, indicating values 12 times that of the pure ligand when cocatalyst Pt and photosensitizer Rhodamine B were present. In addition, this MOF showed a maximum water absorption of 205 cm3·g-1. When dual-functionalized linkers are introduced to the structure of this MOF, its visible-light absorption increases considerably, which can be associated with nearly narrower energy band gaps (2.18 eV). More importantly, this MOF contributes to water absorption and electron collection and transport, acting as a bridge that helps to separate and transfer photogenerated charges while shortening the electron migration path because of the functional group in its configuration. The current paper seeks to shed light on the design of advanced visible-light photocatalysts with no MOF calcination for H2 photocatalytic production.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh 83111-55181, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh 83111-55181, Iran
| | - Nan Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang325035, PR China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang325035, PR China
| |
Collapse
|
17
|
Yu X, Huang Z, Krishna R, Luo X, Liu Y. An ethynyl-modified interpenetrated metal-organic framework for highly efficient selective gas adsorption. Dalton Trans 2023; 52:15101-15106. [PMID: 37814778 DOI: 10.1039/d3dt02834h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
An ethynyl-modified interpenetrated MOF material with lvt topology, [Cu2(BTEB)(NMF)2]·NMF·8H2O (compound 1, H4BTEB = 4,4',4'',4'''-(benzene-1,2,4,5-tetrayltetrakis(ethyne-2,1-diyl))tetrabenzoic acid, NMF = N-Methylformamide), was successfully synthesized by using an alkynyl-functionalized H4BTEB organic ligand under solvothermal conditions. Structural analysis shows that compound 1, consisting of a tetradentate carboxylic acid ligand and classical [Cu2(CO2)4] paddle-wheel structure building units, has a rare 4-connected lvt topology with dual interpenetrating structure, which can improve the framework stability, as well as the gas adsorption capacity and selectivity due to the restricted pore channel. According to the study of gas adsorption performance, compound 1 with a larger surface area, boasts a superior adsorption capacity for small gas molecules. Also, ideal adsorption solution theory (IAST) computational simulation shows that compound 1 has good gas adsorption selectivity for C3H8/CH4, indicating its potential application in gas separation.
Collapse
Affiliation(s)
- Xueyue Yu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Ziyang Huang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, PR China
| | - Rajamani Krishna
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Xiaolong Luo
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, PR China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
18
|
Xu S, Ni H, Zhang X, Han C, Qian J. Abundant Surface Defects in Cobalt Hydroxides/Oxyhydroxides Induced by Zinc Species Facilitate Water Oxidation. Inorg Chem 2023; 62:14757-14763. [PMID: 37639239 DOI: 10.1021/acs.inorgchem.3c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The complex process of the anodic oxygen evolution reaction (OER) severely hinders overall water splitting, which further limits the large-scale production and application of hydrogen energy. In this work, one type of bimetallic coordination polymer of ZnCoBTC using the MOF-on-MOF strategy has been synthesized where both Co(II) and Zn(II) cations exhibit the same coordination environment. By applying an electric potential, the predesigned bimetallic MOF precursor can be conveniently degraded into CoOxHy as an active species for efficient OER. Owing to the dissolution of ZnOxHy species, in situ formed disordered defects on the external surface of the catalyst increase the specific surface area as well as expose abundant active materials. Therefore, the ZnCoOxHy nanosheet shows excellent OER performance and reaches an overpotential of only 334 mV at 10 mA cm-2 with a Tafel slope of 66.4 mV dec-1, indicating fast reaction kinetics. The results demonstrate that metals with the same coordination environment can undergo in situ replacement or secondary growth on the pristine MOF, and they can be electrochemically degraded into highly efficient catalysts for future energy applications.
Collapse
Affiliation(s)
- Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Huijie Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaodeng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
19
|
Zhang L, He Z, Liu Y, You J, Lin L, Jia J, Chen S, Hua N, Ma LA, Ye X, Liu Y, Chen CX, Wang Q. A Robust Squarate-Cobalt Metal-Organic Framework for CO 2/N 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37327481 DOI: 10.1021/acsami.3c06530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The separation of CO2 from the industrial post-combustion flue gas is of great importance to reduce the increasingly serious greenhouse effect, yet highly challenging due to the extremely high stability, low cost, and high separation performance requirements for adsorbents under the practical operating conditions. Herein, we report a robust squarate-cobalt metal-organic framework (MOF), FJUT-3, featuring an ultra-small 1D square channel decorated with -OH groups, for CO2/N2 separation. Remarkably, FJUT-3 not only has excellent stability under harsh chemical conditions but also presents low-cost property for scale-up synthesis. Moreover, FJUT-3 shows excellent CO2 separation performance under various humid and temperature conditions confirmed by the transient breakthrough experiments, thus enabling FJUT-3 with adequate potentials for industrial CO2 capture and removal. The distinct CO2 adsorption mechanism is well elucidated by theoretical calculations, in which the hierarchical C···OCO2, C-O···CCO2, and O-H···OCO2 interactions play a vital synergistic role in the selective CO2 adsorption process.
Collapse
Affiliation(s)
- Lei Zhang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ziyu He
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yupeng Liu
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jianjun You
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Lang Lin
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jihui Jia
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Song Chen
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Nengbin Hua
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Li-An Ma
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiaoyun Ye
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yanrong Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qianting Wang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| |
Collapse
|