1
|
Chang Y, Li S, Chen K, Wang Y, Huang D, Wang X, Li J. Mitochondrial ferritin inhibition aggravates pacing-induced ventricular arrhythmias after myocardial infarction by promoting cardiomyocyte ferroptosis. Cell Signal 2025; 131:111683. [PMID: 40023300 DOI: 10.1016/j.cellsig.2025.111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Post-myocardial infarction ventricular arrhythmias are a leading cause of sudden cardiac death (SCD) following acute myocardial infarction worldwide. Emerging evidence suggests that ferroptosis, an iron-dependent form of cell death, plays a significant role in myocardial infarction damage. While mitochondrial ferritin (FtMt) is known to encapsulate harmful ferrous ions within mitochondria, its role in the development of post-myocardial infarction ventricular arrhythmias (post-MI VAs) is not well understood. OBJECTIVE This study aimed to clarify the role and mechanisms by which FtMt-mediated ferroptosis influences susceptibility to post-MI VAs. METHODS Mice were subjected to permanent ligation of the left anterior descending artery (LAD) to induce myocardial infarction (MI), followed by intracardiac electrophysiological studies to evaluate their vulnerability to post-MI VAs. Patch-clamp recordings and confocal Ca2+ imaging provided data on neonatal rat ventricular myocytes (NRVMs). We utilized DCFH-DA staining, transmission electron microscopy, and Seahorse analysis to examine the mitochondrial bioenergetics and oxidative phosphorylation in NRVMs. RESULTS Ferroptosis was activated in mice post-MI. Inhibiting ferroptosis enhanced cardiac function and reduced the incidence of post-MI VAs. Hypoxia led to electrophysiological dysregulation in NRVMs, which was exacerbated by FtMt inhibition. Specifically, FtMt inhibition under hypoxic conditions further impaired mitochondrial bioenergetics and oxidative phosphorylation, promoting ferroptosis in NRVMs. CONCLUSION FtMt plays a crucial protective function in MI by limiting infarct size, decreasing the frequency of ventricular arrhythmias, and inhibiting ferroptosis both in vivo and in vitro. These results suggest that FtMt may be a viable therapeutic target for treating MI.
Collapse
Affiliation(s)
- Yuchen Chang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Shuai Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Kankai Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Yanpeng Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Dong Huang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Xiaoqing Wang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jingbo Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China.
| |
Collapse
|
2
|
Ning S, Zhong P, Zhao X, Zhao Y, Yang F, Chen Z, Zhang F, Guo S, Wu Y, Yao J, Tian X. USP5-induced deubiquitination of P4HB alleviates ER stress-mediated apoptosis in intestinal ischemia/reperfusion. Cell Mol Life Sci 2025; 82:231. [PMID: 40506531 PMCID: PMC12162451 DOI: 10.1007/s00018-025-05752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 06/16/2025]
Abstract
Intestinal ischemia/reperfusion (I/R) is a severe pathophysiological process that occurs in a variety of clinical conditions and can trigger multiple life-threatening syndromes. Intestinal I/R is associated endoplasmic reticulum (ER) stress. Prolyl 4-hydroxylase subunit beta (P4HB) contributes significantly to maintaining ER redox homeostasis, which is affected by I/R injury. Nevertheless, the molecular mechanism of P4HB expression and function in intestinal I/R is still unknown. In our study, we discovered that the expression of P4HB was clearly downregulated in the intestine of mice at the reperfusion stage and in Caco2 cells at the reoxygenation stage. In addition, P4HB-knockdown mice exhibited clearly enhanced ER stress-mediated apoptosis of intestinal tissue under intestinal I/R, whereas P4HB overexpression in Caco2 cells alleviated ER stress-mediated apoptosis under HR. Furthermore, via bioinformatics screening of proteins that interact with P4HB, ubiquitin-specific protease 5 (USP5) was identified as a critical factor in the abnormal expression of P4HB. USP5 interacts with P4HB and remains stable by removing ubiquitin. In vivo, P4HB knockdown counteracted the effect of USP5 overexpression on alleviating ER stress-mediated apoptosis in response to intestinal I/R. In summary, this study revealed that P4HB plays a crucial role in regulating ER stress-mediated apoptosis and identified USP5, which is a novel mediator of P4HB, as a prospective target for the treatment of intestinal I/R.
Collapse
Affiliation(s)
- Shili Ning
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peiyan Zhong
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuzi Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Fengyuan Yang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shanshan Guo
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Yuanhui Wu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China.
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Xue S, Zeng J, Hao J, Cai W, Ding Y, Chao Y, Miao Z, Xu G, Xu L, Jiang Z. SENP2-mediated deSUMOylation of NCOA4 protects against ferritinophagy-dependent ferroptosis in myocardial ischemia-reperfusion injury. Autophagy 2025:1-18. [PMID: 40366738 DOI: 10.1080/15548627.2025.2504792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Myocardial ischemia-reperfusion (MI/R) injury is a leading cause of morbidity and mortality around the world, characterized by injury to cardiomyocytes that leads to various forms of cell death, including necrosis, apoptosis, autophagy, and ferroptosis. Preventing cell death is crucial for preserving cardiac function after ischemia-reperfusion injury. Ferroptosis, a novel type of cell death, has recently been identified as a key driver of cardiomyocyte death following MI/R. However, the complex regulatory mechanisms involved in ferroptosis remain unclear. Here, we found that SENP2 expression decreased following myocardial ischemia reperfusion injury. Deletion of SENP2 increased cardiomyocyte ferroptosis and hindered cardiac function recovery after MI/R injury, whereas overexpression of SENP2 significantly reduced cardiomyocyte ferroptosis and mitigated MI/R injury. Mechanistically, SENP2 removed the SUMOylation of NCOA4 modified by SUMO1 at K81, K343, and K600 sites. The level of NCOA4 SUMOylation regulated ferritinophagy-dependent ferroptosis through affecting NCOA4 protein stability. SENP2-mediated NCOA4 deSUMOylation alleviated the interaction between NCOA4 and OTUB1, which directly deubiquitinated NCOA4 and maintained its protein stability. Furthermore, administration of SENP2 in the animal MI/R model reduced ferroptosis events, protected the injured myocardium and promoted cardiac function recovery. Collectively, our results demonstrate that SENP2 catalyzes deSUMOylation of NCOA4, alleviates ferritinophagy-mediated ferroptosis in an OTUB1-dependent manner, thereby facilitating cardiac function recovery following MI/R. These findings suggest a potential therapeutic strategy for MI/R treatment.Abbreviations: I/R: ischemia-reperfusion; MI/R: myocardial ischemia-reperfusion; NCOA4: nuclear receptor coactivator 4; OTUB1: OTU domain, ubiquitin aldehyde binding 1; SENP2: SUMO/sentrin specific peptidase 2.
Collapse
Affiliation(s)
- Siyuan Xue
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxin Zeng
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingzhe Hao
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanzhi Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxuan Ding
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zong Miao
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Guanhua Xu
- Geriatric Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zeyu Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Li Z, Bu Y, Wang C, Yu Y, Han L, Liu C, Chen G, Li C, Zhang Y, Cao H, Ma Z, Yue Z. Extracellular vesicle-packaged GBP2 from macrophages aggravates sepsis-induced acute lung injury by promoting ferroptosis in pulmonary vascular endothelial cells. Redox Biol 2025; 82:103614. [PMID: 40156957 PMCID: PMC11994402 DOI: 10.1016/j.redox.2025.103614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophages play a critical role in the development of sepsis-induced acute lung injury (si-ALI), with extracellular vesicles (EVs) acting as crucial mediators. However, the effects and mechanisms of macrophage-derived EVs on si-ALI remain unclear. This study demonstrated that macrophage-derived EVs induce endothelial ferroptosis and barrier disruption during sepsis. Through proteomic sequencing and reanalysis of transcriptomic and single-cell sequencing data, guanylate-binding protein 2 (GBP2) was identified as a key EV molecule. Elevated GBP2 expression was observed in EVs and monocytes from the peripheral blood of sepsis patients, in LPS-stimulated THP-1 and RAW264.7 cells and their secreted EVs, and in macrophages within the lungs of CLP mice. Additionally, GBP2 expression in EVs showed a positive correlation with vascular barrier injury biomarkers, including ANGPT2, Syndecan-1, and sTM. Modulating GBP2 levels in macrophage-derived EVs affected EV-induced ferroptosis in endothelial cells. The mechanism by which GBP2 binds directly to OTUD5 and promotes GPX4 ubiquitination was elucidated using RNA interference, adeno-associated virus transfection, and endothelial-specific Gpx4 knockout mice. A high-throughput screening of small-molecule compounds targeting GBP2 was conducted. Molecular docking, molecular dynamics simulations, and cellular thermal shift assays further confirmed that Plantainoside D (PD) has a potent binding affinity for GBP2. PD treatment inhibited the interaction between GBP2 and OTUD5, leading to a reduction in GPX4 ubiquitination. Further research revealed that PD treatment enhanced the pulmonary protective effects of GBP2 inhibition. In conclusion, this study explored the role of EV-mediated signaling between macrophages and pulmonary vascular endothelial cells in si-ALI, highlighting the GBP2-OTUD5-GPX4 axis as a driver of endothelial ferroptosis and lung injury. Targeting this signaling axis presents a potential therapeutic strategy for si-ALI.
Collapse
Affiliation(s)
- Zhixi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, 150001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, PR China
| | - Yue Bu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China; Department of Pain Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Cheng Wang
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, PR China
| | - Yongjing Yu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, 150001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, PR China
| | - Lei Han
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China
| | - Chang Liu
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, 150001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, PR China; Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, PR China
| | - Guangmin Chen
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, 199 Dazhi Road, Harbin, 150001, PR China
| | - Chenglong Li
- Department of Anesthesiology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, PR China
| | - Yan Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China
| | - Hang Cao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China
| | - Zhaoxue Ma
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China
| | - Ziyong Yue
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, PR China.
| |
Collapse
|
5
|
Yang S, Yang Y, Xu L, Hao C, Chen J. DAPK3 is Essential for DBP-Induced Autophagy of Mouse Leydig Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413936. [PMID: 40047320 PMCID: PMC12061289 DOI: 10.1002/advs.202413936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/05/2025] [Indexed: 05/10/2025]
Abstract
Dibutyl phthalate (DBP) has been widely used in the manufacture of various daily and industrial products. As one of the most important endocrine disruptors, DBP has male reproductive toxicity and can lead to testicular dysfunction. In view of the fact that Leydig cells are important functional and structural units in the testis, their damage will affect testicular function. However, the underlying mechanism of DBP-caused damage to mouse Leydig cells remains elusive. In the study, it is confirmed that DBP can promote the expression of death-associated protein kinase 3 (DAPK3), thereby inducing autophagy of mouse Leydig cells by using in vivo and in vitro experiments. Also, bioinformatics analysis and molecular biology experimental techniques are utilized to further demonstrate that DBP-induced upregulation of DAPK3 results from both the activated transcription by specific protein 2 (Sp2) and the decreased ubiquitination and degradation by parkin RBR E3 ubiquitin-protein ligase (PRKN). Interestingly, melatonin can inhibit both Sp2/DAPK3 and PRKN/DAPK3 signaling pathways by inhibiting oxidative stress, thereby alleviating DBP-induced autophagy of mouse Leydig cells. Overall, the study unravels a novel regulatory mechanism of DBP-induced autophagy of mouse Leydig cells and identifies DAPK3 as a potential therapeutic target for DBP-caused damage to the male reproductive system.
Collapse
Affiliation(s)
- Si Yang
- Department of PhysiologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Ying Yang
- Huankui AcademyJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Linlin Xu
- Department of PathologyThe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Chaoju Hao
- LibraryJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Jiaxiang Chen
- Department of PhysiologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| |
Collapse
|
6
|
Zhu L, Zhu Q, Chen Z, Tao Y, Hu J, Wang D, Lin Y, Yang H, Gao C, Zhang W. Estrogen mitigates ischemia-reperfusion injury by inhibiting cardiomyocyte ferroptosis through the downregulation of PHLDA3 expression. Free Radic Biol Med 2025; 232:1-14. [PMID: 39961475 DOI: 10.1016/j.freeradbiomed.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/08/2025]
Abstract
Ferroptosis represents a significant target for mitigating myocardial ischemia-reperfusion (I/R) injury. Existing literature indicates that estrogen (17β-estradiol, E2) can alleviate such injuries through various pathways. However, the specific mechanisms by which E2 may confer protection against myocardial I/R injury through the inhibition of ferroptosis remain to be fully elucidated. This study employed a mouse model of left anterior descending coronary artery ligation to investigate the protective effects of E2 on myocardial I/R injury, with a particular focus on its inhibitory effects on ferroptosis and PHLDA3 in both hypoxia-reoxygenation (H/R) and I/R models. A bioinformatics analysis was conducted to evaluate the impact of estrogen receptor GPER knockout on PHLDA3 expression and ferroptosis. Loss-of-function approaches were employed to elucidate the role of PHLDA3 in ferroptosis during myocardial I/R injury. Our findings demonstrate that E2 can ameliorate myocardial I/R injury, primarily by inhibiting ferroptosis. Notably, PHLDA3 expression levels were significantly elevated during ischemia-reperfusion events; however, E2 was observed to suppress this expression. Bioinformatics analysis indicated that PHLDA3 levels increased following GPER knockdown, and the inhibitory effect of E2 on PHLDA3 expression could be partially reversed by GPER inhibitors (G15) in animal models. Furthermore, the suppression of PHLDA3 reduced ferroptosis and mitigated the severity of myocardial I/R injury. Utilizing mass spectrometry and co-immunoprecipitation methodologies, we have elucidated a potential mechanism in which PHLDA3 directly binds to and interacts with proteins involved in the process of ferroptosis. Our findings demonstrate that E2 effectively suppresses ferroptosis and mitigates myocardial I/R injury by downregulating PHLDA3 expression through the activation of the GPER receptor.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- Mice
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Male
- Disease Models, Animal
- Estradiol/pharmacology
- Down-Regulation
- Mice, Knockout
- Mice, Inbred C57BL
- Estrogens/pharmacology
- Gene Expression Regulation/drug effects
Collapse
Affiliation(s)
- Lijie Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China; Department of Cardiology of Fuwai Central China Ccardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Coronary Heart Disease Prevention and Control, Zhengzhou, Henan, China
| | - Qiongjun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhezhe Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yecheng Tao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiayi Hu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dan'an Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yutong Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Honghui Yang
- Department of Cardiology of Fuwai Central China Ccardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Coronary Heart Disease Prevention and Control, Zhengzhou, Henan, China
| | - Chuanyu Gao
- Department of Cardiology of Fuwai Central China Ccardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory for Coronary Heart Disease Prevention and Control, Zhengzhou, Henan, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qingchun Road, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Fei X, Song C, Cui J, Li Y, Lei X, Tang H. The role of deubiquitinases in cardiovascular diseases: mechanisms and therapeutic implications. Front Cardiovasc Med 2025; 12:1582049. [PMID: 40376148 PMCID: PMC12078317 DOI: 10.3389/fcvm.2025.1582049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
Cardiovascular diseases (CVDs) have become the leading cause of death globally, surpassing infectious diseases and other chronic illnesses. The incidence and mortality rates of CVDs are rising worldwide, posing a key challenge in public health. The ubiquitination system is a vast and complex. It is an important post-translational modification that plays a crucial role in various cellular processes. Deubiquitination is catalyzed by deubiquitinases (DUBs), which remove ubiquitin (Ub) from ubiquitinated proteins, thereby reversing the ubiquitination process. DUBs play an important role in many biological processes, such as DNA repair, cell metabolism, differentiation, epigenetic regulation, and protein stability control. They also participate in the regulation of many signaling pathways associated with the development and progression of CVDs. In this review, we primarily focus on the role of DUBs in various key pathological mechanisms of atherosclerosis (AS), such as foam cell formation, vascular remodeling (VR), endothelial-to-mesenchymal transition (End-MT), and clonal hematopoiesis (CH). In the heart, we summarize the involvement of DUBs in diseases and pathological processes, including heart failure (HF), myocardial infarction (MI), myocardial hypertrophy (MH) and ischemia/reperfusion (I/R) injury. Additionally, we also explore the diabetic cardiomyopathy (DCM) and the use of doxorubicin-induced cardiotoxicity in clinical settings. A comprehensive understanding of deubiquitination may provide new insights for the treatment and drug design of CVDs.
Collapse
Affiliation(s)
- Xiangyu Fei
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jian Cui
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuqing Li
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiaoyong Lei
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Huifang Tang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China
- Department of Cardiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Myocardial Injury in Hunan Province, The First Affiliated Hospital, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Mu X, Feng L, Wang Q, Li H, Zhou H, Yi W, Sun Y. Decreased gut microbiome-derived indole-3-propionic acid mediates the exacerbation of myocardial ischemia/reperfusion injury following depression via the brain-gut-heart axis. Redox Biol 2025; 81:103580. [PMID: 40058066 PMCID: PMC11930714 DOI: 10.1016/j.redox.2025.103580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Despite the increasing recognition of the interplay between depression and cardiovascular disease (CVD), the precise mechanisms by which depression contributes to the pathogenesis of cardiovascular disease remain inadequately understood. The involvement of gut microbiota and their metabolites to health and disease susceptibility has been gaining increasing attention. In this study, it was found that depression exacerbated cardiac injury, impaired cardiac function (EF%: P < 0.01; FS%: P < 0.05), hindered long-term survival (P < 0.01), and intensified adverse cardiac remodeling (WGA: P < 0.01; MASSON: P < 0.0001) after myocardial ischemia/reperfusion (MI/R) in mice. Then we found that mice receiving microbiota transplants from chronic social defeat stress (CSDS) mice exhibited worse cardiac function (EF%: P < 0.01; FS%: P < 0.01) than those receiving microbiota transplants from non-CSDS mice after MI/R injury. Moreover, impaired tryptophan metabolism due to alterations in gut microbiota composition and structure was observed in the CSDS mice. Mechanistically, we analyzed the metabolomics of fecal and serum samples from CSDS mice and identified indole-3-propionic acid (IPA) as a protective agent for cardiomyocytes against ferroptosis after MI/R via NRF2/System xc-/GPX4 axis, played a role in mediating the detrimental influence of depression on MI/R. Our findings provide new insights into the role of the gut microbiota and IPA in depression and CVD, forming the basis of intervention strategies aimed at mitigating the deterioration of cardiac function following MI/R in patients experiencing depression.
Collapse
Affiliation(s)
- Xingdou Mu
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Lele Feng
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Qiang Wang
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Hong Li
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Haitao Zhou
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Wei Yi
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| | - Yang Sun
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
9
|
Han L, Zhai W. Mechanisms and preventive measures of ALDH2 in ischemia‑reperfusion injury: Ferroptosis as a novel target (Review). Mol Med Rep 2025; 31:105. [PMID: 40017132 PMCID: PMC11876945 DOI: 10.3892/mmr.2025.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Ischemia‑reperfusion injury (IRI) refers to tissue or organ damage that occurs following a period of inadequate blood supply (ischemia) followed by restoration of blood flow (reperfusion) within a short time frame. This phenomenon is prevalent in clinical conditions such as cardiovascular and cerebrovascular disease, organ transplantation and stroke. Despite its frequency, effective therapeutic strategies to mitigate IRI remain elusive in clinical practice, underscoring the need for a deeper understanding of its molecular mechanisms. Aldehyde dehydrogenase 2 (ALDH2), a key enzyme in alcohol metabolism, serves a role in alleviating oxidative stress and cell damage during IRI by modulating oxidative stress, decreasing apoptosis and inhibiting inflammatory responses. ALDH2 exerts protective effects by detoxifying reactive aldehydes, thereby preventing lipid peroxidation and maintaining cellular homeostasis. Furthermore, ferroptosis, a regulated form of cell death driven by iron accumulation and subsequent lipid peroxidation, is a key process in IRI. However, the precise role of ALDH2 in modulating ferroptosis during IRI remains incompletely understood. Although there is an interaction between ALDH2 activity and ferroptosis, the underlying mechanisms have yet to be clarified. The present review examines the role of ALDH2 and ferroptosis in IRI and the potential regulatory influence of ALDH2 on ferroptosis mechanisms, as well as potential targeting of ALDH2 and ferroptosis for IRI treatment and prevention. By elucidating the complex interplay between ALDH2 and ferroptosis, the present review aims to provide new insights for the development of innovative therapeutic strategies to mitigate ischemic tissue damage and improve clinical outcomes.
Collapse
Affiliation(s)
- Liang Han
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Zhai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
10
|
Qiu R, He Y, Zhan J, Li Q, Cai X, Hua S, Wang L, Sun X, Tian Y. Diselenide Nanogels Modulate Mitochondrial Function and Mitigate Oxidative Stress in Cardiomyocytes for Enhanced Cardiac Repair. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15121-15144. [PMID: 40028900 DOI: 10.1021/acsami.4c22685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mitochondrial dysfunction and oxidative stress are pivotal factors contributing to the loss of cardiac function following heart injury, yet these aspects are frequently underappreciated in the medication design paradigm. Here we have developed diselenide-cross-linked zwitterionic nanogels to restore mitochondrial homeostasis and boost energy supply for damaged heart repair. These nanogels exhibit an enhanced circulation time within the bloodstream post systemic administration and have been observed to concentrate at the site of the damaged myocardium in both myocardial infarct (MI) rat model and cardiotoxic mouse model. Our mechanistic investigations have revealed that these nanogels have the capacity to mitigate the oxidative microenvironment, thereby preserving the mitochondrial function of cardiomyocytes. Moreover, the degradation products of these nanogels have been shown to upregulate intracellular ATP synthesis, which in turn increases cardiac contractility and promotes the recovery of cardiac function. The innovative nanogel system presented herein holds significant potential for clinical translation, offering a therapeutic strategy for the restoration of cardiac function and a fresh perspective on maintaining energy metabolism homeostasis in the treatment of heart injury.
Collapse
Affiliation(s)
- Renjie Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yutong He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Jiamian Zhan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Xiaohui Cai
- School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Shaofeng Hua
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
11
|
Xie Y, Yu H, Ye Y, Wang J, Yang Z, Zhou E. Activation of Ferroptosis and NF-κB/NLRP3/MAPK Pathways in Methylmercury-Induced Hepatotoxicity. Toxicol Ind Health 2025; 41:131-139. [PMID: 39672672 DOI: 10.1177/07482337241307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Methylmercury (MeHg) is a potent hepatotoxin with a complex mechanism of inducing liver injury. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is implicated in various toxicological responses, but its role in MeHg-induced liver damage remains under investigation. In this study, we established an acute liver injury (ALI) model in mice via gavage of MeHg (0, 40, 80, 160 μmol/kg). Histopathological analysis revealed dose-dependent liver damage, corroborated by elevated serum biochemical markers, confirming MeHg-induced hepatotoxicity. MeHg exposure raised MDA levels, inhibited SOD and GSH activity, and downregulated CAT expression. Increased iron accumulation and elevated transferrin receptor expression were observed, alongside decreased GPX4 and SLC7A11 levels, indicating ferroptosis involvement. Additionally, inflammation in MeHg-exposed livers was markedly intensified, as evidenced by increased MPO activity, upregulation of pro-inflammatory cytokines, and activation of the NF-κB/NLRP3 signaling pathway. The Keap1/NRF2/HO-1 oxidative stress response pathway was significantly activated, and p38/ERK1/2 MAPK signaling was notably increased. These findings suggested that MeHg induced acute liver injury through the interplay of ferroptosis, oxidative stress, inflammation, and MAPK signaling pathways, providing a scientific basis for future exploration of the mechanisms underlying MeHg-induced hepatotoxicity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yueqing Xie
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Hongsen Yu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Yingrong Ye
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| |
Collapse
|
12
|
Liu C, Sui H, Li Z, Sun Z, Li C, Chen G, Ma Z, Cao H, Xi H. THBS1 in macrophage-derived exosomes exacerbates cerebral ischemia-reperfusion injury by inducing ferroptosis in endothelial cells. J Neuroinflammation 2025; 22:48. [PMID: 39994679 PMCID: PMC11854006 DOI: 10.1186/s12974-025-03382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Macrophages play a critical role in the development of acute ischemic stroke (AIS). Cerebral ischemia-reperfusion injury (CIRI) is a pivotal pathological process that exacerbates AIS, with exosomes act as crucial mediators. However, the effects and mechanisms of action of macrophage-derived exosomes on CIRI remain unclear. This study demonstrated that macrophage-derived exosomes induce endothelial ferroptosis and barrier disruption during CIRI. Through proteomic sequencing and the reanalysis of transcriptomic and single-cell sequencing data, thrombospondin-1 (THBS1) was identified as a key exosomal molecule. Elevated THBS1 was observed in exosomes and monocytes from the peripheral blood of patients with AIS in oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated THP-1 and RAW264.7, in their secreted exosomes, and in macrophages within the brains of transient middle cerebral artery occlusion (tMCAO) mice. Additionally, THBS1 expression in exosomes was positively correlated with vascular barrier injury biomarkers, including MMP-9 and S100B. Modulation of THBS1 in macrophage-derived exosomes affected exosome-induced ferroptosis in endothelial cells. The mechanism by which THBS1 binds directly to OTUD5 and promotes GPX4 ubiquitination was elucidated using RNA interference, adeno-associated virus transfection, and endothelial-specific Gpx4 knockout mice. High-throughput screening of small-molecule compounds targeting THBS1 was performed. Molecular docking, molecular dynamics simulations, and cellular thermal shift assays further confirmed that salvianolic acid B (SAB) has a potent binding affinity for THBS1. SAB treatment inhibited the interaction between THBS1 and OTUD5, leading to reduced GPX4 ubiquitination. Further research revealed that SAB treatment enhanced the cerebral protective effects of THBS1 inhibition. In conclusion, this study explored the role of exosome-mediated signaling between macrophages and cerebral vascular endothelial cells in CIRI, highlighting the THBS1-OTUD5-GPX4 axis as a driver of endothelial ferroptosis and brain injury. Targeting this signaling axis represents a potential therapeutic strategy for treating CIRI.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
| | - Haijing Sui
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, People's Republic of China
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Zhixi Li
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Zhenyu Sun
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, People's Republic of China
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Chenglong Li
- Department of Anesthesiology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, People's Republic of China
| | - Guangmin Chen
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, 199 Dazhi Road, Harbin, 150001, People's Republic of China
| | - Zhaoxue Ma
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, People's Republic of China
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Hang Cao
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, People's Republic of China
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Hongjie Xi
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, 150001, People's Republic of China.
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
13
|
Hou H, Huang S, Huang W, Huang L, Zhang Z, Liang L. Aldehyde Dehydrogenase 2 rs671 Polymorphism is Associated with Susceptibility of Coronary Atherosclerosis in Patients with Hypertension. Int J Gen Med 2025; 18:681-690. [PMID: 39959460 PMCID: PMC11827492 DOI: 10.2147/ijgm.s501396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/02/2025] [Indexed: 02/18/2025] Open
Abstract
Objective Predisposing factors for coronary atherosclerosis in hypertensive individuals are unclear. Atherosclerosis is a chronic inflammatory disease caused by lipid deposition in the blood vessels, and aldehyde dehydrogenase 2 (ALDH2) is involved in this process. The aim of this study was to assess the relationship between ALDH2 rs671 polymorphism, serum lipids, peripheral inflammation indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) and coronary atherosclerosis risk in hypertensive patients. Methods A total of 923 patients with hypertension (439 patients with coronary atherosclerosis, and 484 without) who were admitted to Meizhou People's Hospital between January 2019 and February 2024 were retrospectively analyzed. The relationship between ALDH2 rs671 polymorphism, serum lipid levels, and peripheral inflammation indices and the risk of coronary atherosclerosis was analyzed. Results There were 532 (57.6%), 337 (36.5%), and 54 (5.9%) individuals with ALDH2 rs671 G/G, G/A, and A/A genotype, respectively. The frequency of the ALDH2 rs671 G/A genotype, and the levels of TC, LDL-C, PIV, SII, and SIRI in patients with coronary atherosclerosis were higher than those in controls. Logistic analysis showed that body mass index (BMI) ≥24.0 kg/m2 (odds ratio (OR): 1.670, 95% confidence interval (CI): 1.185-2.352, p=0.003), history of smoking (OR: 2.024, 95% CI: 1.263-3.243, p=0.003), ALDH2 rs671 G/A genotype (OR: 1.821, 95% CI: 1.280-2.589, p=0.001), high TC (OR: 1.592, 95% CI: 1.021-2.485, p=0.040), high SII (OR: 2.290, 95% CI: 1.386-3.784, p=0.001), and high SIRI (OR: 1.727, 95% CI: 1.126-2.650, p=0.012) were associated with coronary atherosclerosis in patients with hypertension. Conclusion Overweight (BMI ≥24.0 kg/m2), history of smoking, ALDH2 rs671 G/A genotype, high TC, SII, and SIRI levels were associated risk factors for coronary atherosclerosis in patients with hypertension.
Collapse
Affiliation(s)
- Haisong Hou
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Sina Huang
- Department of Cardiovascular Surgery, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Wenyi Huang
- Center for Surgical Operation, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Lingmei Huang
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhouhua Zhang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Liu Liang
- Department of Laboratory Medicine, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
14
|
Liu X, Shi X, Zhao H, Wang C. Exploring the molecular mechanisms of comorbidity of myocardial infarction and anxiety disorders by combining multiple data sets with in vivo experimental validation. Int Immunopharmacol 2025; 146:113852. [PMID: 39733641 DOI: 10.1016/j.intimp.2024.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The incidence of comorbidity between myocardial infarction (MI) and anxiety disorders is increasing. However, the biological association between them has not been fully understood. OBJECTIVE This study aims to investigate the molecular mechanisms of comorbidity between MI and anxiety disorders and to predict their key genes and potential therapeutic drugs. METHODS We searched Gene Expression Omnibus databases and performed differential analyses using the limma package to identify the functional enrichment of differential genes. Next, we constructed regulatory networks to investigate the relationship between hub genes and autophagy, ferroptosis, and immunity. Furthermore, we predicted transcription factors by R package, constructed a miRNA network, performed the single-cell analysis of key gene expression, and predicted drug targeting of differential genes using the Connectivity Map database. RESULTS The datasets for MI and anxiety disorders were analyzed for up and down-regulated differential genes, resulting in 35 intersecting differential genes. The top 10 feature genes from each dataset were intersected using Random Forest, resulting in the identification of three intersecting genes: STK17B, AKIRIN2, and WDR77. Validation of the above key genes was carried out by in vitro experiments. We examined the gene expression of STK17B, WDR77 and AKIRIN2 in the hippocampus and myocardial infarction border zone respectively by qPCR and WB, and the results confirmed that the above are the key genes for myocardial infarction and anxiety. There is a significant correlation between the comorbidity mechanism of myocardial infarction and anxiety disorders with ferroptosis and immunity. The construction of the miRNA network revealed that miR-205 and let-7 had higher average connectivity among the three hub genes. The single-cell analysis revealed significant expression of key genes in Endothelial cells, Cardiomyocytes, Macrophages, and Fibroblasts datasets. Cd274 showed a higher correlation with key genes in myocardial infarction and anxiety disorders. CONCLUSION Validation by multiple datasets and in vitro experiments showed that STK17B, AKIRIN2, and WDR77 are the key genes in the comorbidity of myocardial infarction and anxiety disorders, and ferroptosis and immunity are the key links in the comorbidity mechanism of myocardial infarction and anxiety disorders.
Collapse
Affiliation(s)
- Xiang Liu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaojun Shi
- Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
15
|
Zhang QY, Gong HB, Jiang MY, Jin F, Wang G, Yan CY, Luo X, Sun WY, Ouyang SH, Wu YP, Duan WJ, Liang L, Cao YF, Sun XX, Liu M, Jiao GL, Wang HJ, Hiroshi K, Wang X, He RR, Li YF. Regulation of enzymatic lipid peroxidation in osteoblasts protects against postmenopausal osteoporosis. Nat Commun 2025; 16:758. [PMID: 39824794 PMCID: PMC11742680 DOI: 10.1038/s41467-025-55929-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Oxidative stress plays a critical role in postmenopausal osteoporosis, yet its impact on osteoblasts remains underexplored, limiting therapeutic advances. Our study identifies phospholipid peroxidation in osteoblasts as a key feature of postmenopausal osteoporosis. Estrogen regulates the transcription of glutathione peroxidase 4 (GPX4), an enzyme crucial for reducing phospholipid peroxides in osteoblasts. The deficiency of estrogen reduces GPX4 expression and increases phospholipid peroxidation in osteoblasts. Inhibition or knockout of GPX4 impairs osteoblastogenesis, while the elimination of phospholipid peroxides rescues bone formation and mitigates osteoporosis. Mechanistically, 4-hydroxynonenal, an end-product of phospholipid peroxidation, binds to integrin-linked kinase and triggers its protein degradation, disrupting RUNX2 signaling and inhibiting osteoblastogenesis. Importantly, we identified two natural allosteric activators of GPX4, 6- and 8-Gingerols, which promote osteoblastogenesis and demonstrate anti-osteoporotic effects. Our findings highlight the detrimental role of phospholipid peroxidation in osteoblastogenesis and underscore GPX4 as a promising therapeutic target for osteoporosis treatment.
Collapse
Grants
- 82125038, T2341004, 82174054, 82321004, 82274123, 82350003 National Natural Science Foundation of China (National Science Foundation of China)
- 2021B1515120023, 2023B1515040016, 2023B0303000026, 2020A1515110596 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
- the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Y036 to RRH), Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine (2023LSYS002), and Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility (2024A03J090) to RRH, Science and Technology Program of Guangzhou (202102010116) to YFL.
Collapse
Affiliation(s)
- Qiong-Yi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Hai-Biao Gong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Man-Ya Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Fujun Jin
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chang-Yu Yan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Xiang Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wan-Yang Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Shu-Hua Ouyang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yan-Ping Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Lei Liang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, Shanghai, 200032, China
| | - Xin-Xin Sun
- Jiujiang Maternal and Child Health Hospital, Jiujiang, 332000, China
| | - Meijing Liu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China
| | - Gen-Long Jiao
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Hua-Jun Wang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Kurihara Hiroshi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Xiaogang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, PR China.
| | - Rong-Rong He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
- The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
- Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Yi-Fang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China.
- The Second Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
- Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Jing C, Wu Y, Zhang Y, Zhu Z, Zhang Y, Liu Z, Sun D. Epigenetic regulation and post-translational modifications of ferroptosis-related factors in cardiovascular diseases. Clin Epigenetics 2025; 17:4. [PMID: 39799367 PMCID: PMC11724467 DOI: 10.1186/s13148-024-01809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
As an important element of the human body, iron participates in numerous physiological and biochemical reactions. In the past decade, ferroptosis (a form of iron-dependent regulated cell death) has been reported to contribute to the pathogenesis and progression of various diseases. The stability of iron in cardiomyocytes is crucial for the maintenance of normal physiological cardiac activity. Ferroptosis has been detected in many cardiovascular diseases (CVDs), including coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and chemotherapy-induced myocardial damage. In cardiomyocytes, epigenetic regulation and post-translational modifications regulate the expression of ferroptosis-related factors, maintain iron homeostasis, and participate in the progression of CVDs. Currently, there is no detailed mechanism to explain the relationship between epigenetic regulation and ferroptosis in CVDs. In this review, we provide an initial summary of the core mechanisms of ferroptosis in cardiomyocytes, with first focus on the epigenetic regulation and expression of ferroptosis-related factors in the context of common cardiovascular diseases. We anticipate that the new insights into the pathogenesis of CVDs provided here will inspire the development of clinical interventions to specifically target the active sites of these factors, reducing the harmfulness of ferroptosis to human health.
Collapse
Affiliation(s)
- Chunlu Jing
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
- Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yupeng Wu
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Yuzhu Zhang
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Zaihan Zhu
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Yong Zhang
- Department of Urology, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Zhen Liu
- Department of Urology, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China.
| | - Dandan Sun
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China.
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China.
| |
Collapse
|
17
|
Wang J, Liao L, Miao B, Yang B, Li B, Ma X, Fitz A, Wu S, He J, Zhang Q, Ji S, Jin G, Zhang J, Cao Y, Wang H, Qin W, Sun C, Bernards R, Wang C. Deciphering the role of the MALT1-RC3H1 axis in regulating GPX4 protein stability. Proc Natl Acad Sci U S A 2025; 122:e2419625121. [PMID: 39739814 PMCID: PMC11725786 DOI: 10.1073/pnas.2419625121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Ferroptosis, a unique form of iron-dependent cell death triggered by lipid peroxidation accumulation, holds great promise for cancer therapy. Despite the crucial role of GPX4 in regulating ferroptosis, our understanding of GPX4 protein regulation remains limited. Through FACS-based genome-wide CRISPR screening, we identified MALT1 as a regulator of GPX4 protein. Inhibition of MALT1 expression enhances GPX4 ubiquitination-mediated degradation by up-regulating the E3 ubiquitin ligase RC3H1. Using both rescue assays and functional genetic screening, we demonstrate that pharmacologically targeting MALT1 triggers ferroptosis in liver cancer cells. Moreover, we show that targeting MALT1 synergizes with sorafenib or regorafenib to induce ferroptosis across multiple cancer types. These findings elucidate the modulatory effects of the MALT1-RC3H1 axis on GPX4 stability, revealing a molecular mechanism that could be exploited to induce ferroptosis for cancer therapy.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
| | - Long Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
| | - Beiping Miao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
- German Cancer Research Center, Division Immune Regulation in Cancer, Heidelberg69120, Germany
| | - Bo Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230027, China
| | - Botai Li
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
| | - Xuhui Ma
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Annika Fitz
- German Cancer Research Center, Division Immune Regulation in Cancer, Heidelberg69120, Germany
| | - Shanshan Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
| | - Jia He
- Department of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai200072, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai200032, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200336, China
| | - Jianming Zhang
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai200240, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
| | - Chong Sun
- German Cancer Research Center, Division Immune Regulation in Cancer, Heidelberg69120, Germany
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200032, China
| |
Collapse
|
18
|
Shi X, Xu J, Liu L, Zhao S, Qian Y, Fang Z, Lin L, Zhao X, Xie S, Shi F, Han J. Deubiquitinase MYSM1 drives myocardial ischemia/reperfusion injury by stabilizing STAT1 in cardiomyocytes. Theranostics 2025; 15:1606-1621. [PMID: 39897566 PMCID: PMC11780537 DOI: 10.7150/thno.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Myocardial ischemia/reperfusion (I/R) injury leads to irreversible cardiomyocyte death and aggravates myocardial infarction. Deubiquitinating enzymes (DUBs) are essential for maintaining substrate protein stability and functionality, playing significant roles in cardiac pathophysiology. In this study, we aimed to clarify the regulatory role of a DUB, Myb-like, SWIRM, and MPN domains 1 protein (MYSM1), in myocardial I/R injury and explore the molecular mechanism behind. Methods and Results: Firstly, it was found that the expression of MYSM1 positively correlates with myocardial I/R injury. Genetic knockdown of MYSM1 significantly conferred protection against I/R injury in hearts. Correspondingly, AAV9-mediated cardiomyocyte-specific knockdown of MYSM1 had a therapeutic effect on myocardial I/R injury. Through a comprehensive proteome-wide quantitative analysis, we identified signal transducer and activator of transcription 1 (STAT1) as the direct substrate of MYSM1. Mechanistically, MYSM1 mediated the K63-linked deubiquitination and stabilization of STAT1 at position K379 via its MPN metalloprotease domain. Additionally, MYSM1 initiates the expression of necroptosis-related genes by promoting the transcription factor function of STAT1. Conclusion: This study illustrated a MYSM1-STAT1 axis in regulating myocardial I/R injury and identified MYSM1 as a pharmacological target for myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lei Liu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shenggang Zhao
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanyuan Qian
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zimin Fang
- Department of Ultrasound, Puer People's Hospital, Puer, Yunnan, China
| | - Liming Lin
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xia Zhao
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shangcai Xie
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fengjie Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
19
|
Zhou X, Wang H, Yan B, Nie X, Chen Q, Yang X, Lei M, Guo X, Ouyang C, Ren Z. Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07642-5. [PMID: 39641901 DOI: 10.1007/s10557-024-07642-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Cardiovascular diseases (CVDs) are major public health problems that threaten the lives and health of individuals. The article has reviewed recent progresses about ferroptosis and ferroptosis-related intervention approaches for the treatment of CVDs and provided more references and strategies for targeting ferroptosis to prevent and treat CVDs. METHODS A comprehensive review was conducted using the literature researches. RESULTS AND DISCUSSION Many ferroptosis-targeted compounds and ferroptosis-related genes may be prospective targets for treating CVDs and our review provides a solid foundation for further studies about the detailed pathological mechanisms of CVDs. CONCLUSION There are challenges and limitations about the translation of ferroptosis-targeted potential therapies from experimental research to clinical practice. It warrants further exploration to pursure safer and more effective ferroptosis-targeted thereapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Xianpeng Zhou
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Hao Wang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Biao Yan
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xinwen Nie
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaosong Yang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Min Lei
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiying Guo
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Changhan Ouyang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
20
|
Liu Y, Miao R, Xia J, Zhou Y, Yao J, Shao S. Infection of Helicobacter pylori contributes to the progression of gastric cancer through ferroptosis. Cell Death Discov 2024; 10:485. [PMID: 39622791 PMCID: PMC11612470 DOI: 10.1038/s41420-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative pathogen that colonizes gastric epithelial cells, and its chronic infection is the primary risk factor for the development of gastric cancer (GC). Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and reactive oxygen species (ROS) imbalance. There is evidence suggesting that pathogens can manipulate ferroptosis to facilitate their replication, transmission, and pathogenesis. However, the interaction between ferroptosis and H. pylori infection requires further elucidation. We reviewed the mechanism of ferroptosis and found that H. pylori virulence factors such as cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), neutrophil-activating protein A (NapA), superoxide dismutase B (SodB), γ-glutamyl transpeptidase (gGT), lipopolysaccharide (LPS), and outer inflammatory protein A (OipA) affected glutathione (GSH), ROS, and lipid oxidation to regulate ferroptosis. It also affected the progression of GC by regulating ferroptosis-related indicators through abnormal gene expression after H. pylori infected gastric mucosa cells. Finally, we discuss the potential application value of ferroptosis inducers, inhibitors and other drugs in treating H. pylori-infected GC patients while acknowledging that their interactions are still not fully understood.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Renjie Miao
- Department of Clinical laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinxuan Xia
- Zhenjiang Mental Health Center, Jiangsu, China
| | - Yong Zhou
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jun Yao
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
21
|
Hu F, Hu T, He A, Yuan Y, Wang X, Zou C, Qiao Y, Xu H, Liu L, Wang Q, Liu J, Lai S, Huang H. Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1. J Cell Mol Med 2024; 28:e70313. [PMID: 39730981 DOI: 10.1111/jcmm.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice. Our findings demonstrate that pretreatment with PUE effectively mitigated cardiomyocyte ferroptosis, restored redox balance, preserved mitochondrial energy production and maintained mitochondrial function following MI/RI. Furthermore, these cardioprotective effects of PUE were found to be mediated by the downregulation of voltage-dependent anion channel 1 (VDAC1) protein. These data reveal a novel mechanism by which PUE inhibits MI/RI and reveal that this protective effect of PUE is dependent on the downregulation of VDAC1.
Collapse
Affiliation(s)
- Fajia Hu
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tie Hu
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Andi He
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Yuan
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqi Wang
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chenchao Zou
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huaihan Xu
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lanxiang Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qun Wang
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Songqing Lai
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Zhao Y, Liang X, Li T, Shao Z, Cao Z, Zeng Y, Yan X, Chen Q, Zhou H, Li W, Cheng G, Jiang Y, Li X, Zhang Y, Hu B. Apelin deficiency exacerbates cardiac injury following infarction by accelerating cardiomyocyte ferroptosis. Free Radic Res 2024; 58:854-867. [PMID: 39731709 DOI: 10.1080/10715762.2024.2443606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024]
Abstract
Apelin is an endogenous ligand for the Apelin receptor and is a critical protective effector in myocardial infarction (MI). Nevertheless, these protective mechanisms are not fully understood. Ferroptosis is the major driving factor of MI. This study aimed to investigate the effects and underlying regulatory mechanisms of Apelin on cardiomyocyte ferroptosis in MI. A model of MI was induced in adult C57BL/6J wild type (WT) and Apelin knockout (Apelin-/-) mice. Cardiac function was examined by echocardiography 4 weeks post-MI. RNA-seq, histochemical analyses, and Western blotting were applied to examine the effects of Apelin knockout on the transcriptome and pathological remodeling following infarction and the molecular mechanisms. Mice neonatal cardiomyocytes (NCMs) were used to establish the serum deprivation/hypoxia (SD/H) model in vitro. Compared with WT mice, Apelin-/- mice exhibited more severe impairment of cardiac function and increased fibrosis following infarction. Transcriptome and biochemical analyses revealed the involvement of ferroptosis in mediating Apelin function in MI. Ferroptosis-related proteins were significantly increased post-MI in Apelin-/- mice whereas p-AMPK was greatly decreased. Apelin treatment activated the AMPK pathway and thereby inhibited ferroptosis of NCMs induced by SD/H in vitro. These protective effects were partially reversed by AMPK inhibitor. Apelin deficiency aggravated cardiac dysfunction following infarction by activating cardiomyocyte ferroptosis via inhibition of the AMPK pathway. This offers a novel potential therapeutic target for MI treatment.
Collapse
Affiliation(s)
- Yuechu Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ting Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhuang Shao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi Cao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi Zeng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaofei Yan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guifen Cheng
- Department of Cardiac Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yaping Jiang
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuelin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bei Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
24
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
25
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
26
|
Liu Y, Yang P, Wang J, Peng W, Zhao J, Wang Z. MiRNA Regulates Ferroptosis in Cardiovascular and Cerebrovascular Diseases. DNA Cell Biol 2024; 43:492-509. [PMID: 39417991 DOI: 10.1089/dna.2024.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) significantly contribute to global mortality and morbidity due to their complex pathogenesis involving multiple biological processes. Ferroptosis is an important physiological process in CCVDs, manifested by an abnormal increase in intracellular iron concentration. MiRNAs, a key class of noncoding RNA molecules, are crucial in regulating CCVDs through pathways like glutathione-glutathione peroxidase 4, glutamate/cystine transport, iron metabolism, lipid metabolism, and other oxidative stress pathways. This article summarizes the progress of miRNAs' regulation on CCVDs, aiming to provide insights for the diagnosis and treatment of CCVDs.
Collapse
Affiliation(s)
- Yiman Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Peijuan Yang
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jingjing Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Wu Peng
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jinli Zhao
- Emergency Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
27
|
Zang X, He XY, Xiao CM, Lin Q, Wang MY, Liu CY, Kong LY, Chen Z, Xia YZ. Circular RNA-encoded oncogenic PIAS1 variant blocks immunogenic ferroptosis by modulating the balance between SUMOylation and phosphorylation of STAT1. Mol Cancer 2024; 23:207. [PMID: 39334380 PMCID: PMC11438063 DOI: 10.1186/s12943-024-02124-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The clinical response rate to immune checkpoint blockade (ICB) therapy in melanoma remains low, despite its widespread use. Circular non-coding RNAs (circRNAs) are known to play a crucial role in cancer progression and may be a key factor limiting the effectiveness of ICB treatment. METHODS The circRNAs that were downregulated after coadministration compared with single administration of PD-1 inhibitor administration were identified through RNA-seq and Ribo-seq, and thus the circPIAS1 (mmu_circ_0015773 in mouse, has_circ_0008378 in human) with high protein coding potential was revealed. Fluorescence in situ hybridization (FISH) assays were conducted to determine the localization of circPIAS1 in human and mouse melanoma cells, as well as its presence in tumor and adjacent tissues of patients. Validation through dual-luciferase reporter assay and LC-MS/MS confirmed the ability of circPIAS1 to encode a novel 108 amino acid polypeptide (circPIAS1-108aa). Specific antisense oligonucleotides (ASOs) targeting the junction site of circPIAS1 were developed to reduce its intracellular levels. Proliferation changes in melanoma cells were assessed using CCK8, EdU, and colony formation assays. The impact of circPIAS1-108aa on the ferroptosis process of melanoma cells was studied through GSH, MDA, and C11-BODIPY staining assays. Western Blot, Immunoprecipitation (IP), and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques were employed to investigate the impact of circPIAS1-108aa on the P-STAT1/SLC7A11/GPX4 signaling pathway, as well as its influence on the balance between STAT1 SUMOylation and phosphorylation. Additionally, a melanoma subcutaneous transplanted tumor mouse model was utilized to examine the combined effect of reducing circPIAS1 levels alongside PD-1 inhibitor. RESULTS Compared with the group treated with PD-1 inhibitor alone, circPIAS1 was significantly down-regulated in the coadministration group and demonstrated higher protein coding potential. CircPIAS1, primarily localized in the nucleus, was notably upregulated in tumor tissues compared to adjacent tissues, where it plays a crucial role in promoting cancer cell proliferation. This circRNA can encode a unique polypeptide consisting of 108 amino acids, through which it exerts its cancer-promoting function and impedes the effectiveness of ICB therapy. Mechanistically, circPIAS1-108aa hinders STAT1 phosphorylation by recruiting SUMO E3 ligase Ranbp2 to enhance STAT1 SUMOylation, thereby reactivating the transduction of the SLC7A11/GPX4 signaling pathway and restricting the immunogenic ferroptosis induced by IFNγ. Furthermore, the combination of ASO-circPIAS1 with PD-1 inhibitor effectively inhibits melanoma growth and significantly enhances the efficacy of immune drugs in vivo. CONCLUSIONS Our study uncovers a novel mechanism regarding immune evasion in melanoma driven by a unique 108aa peptide encoded by circPIAS1 in melanoma that dramatically hinders immunogenic ferroptosis triggered by ICB therapy via modulating the balance between SUMOylation and phosphorylation of STAT1. This work reveals circPIAS1-108aa as a critical factor limiting the immunotherapeutic effects in melanoma and propose a promising strategy for improving ICB treatment outcomes.
Collapse
Affiliation(s)
- Xin Zang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xiao-Yu He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Cheng-Mei Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Qing Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Meng-Yue Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Cheng-Yan Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Zhong Chen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, 109 Long Mian Avenue, Nanjing, 211100, China.
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor and Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
28
|
Zhang JF, Hong LH, Fan SY, Zhu L, Yu ZP, Chen C, Kong LY, Luo JG. Discovery of piperine derivatives as inhibitors of human dihydroorotate dehydrogenase to induce ferroptosis in cancer cells. Bioorg Chem 2024; 150:107594. [PMID: 38941701 DOI: 10.1016/j.bioorg.2024.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Inhibition of human dihydroorotate dehydrogenase (hDHODH) represents a promising strategy for suppressing the proliferation of cancer cells. To identify novel and potent hDHODH inhibitors, a total of 28 piperine derivatives were designed and synthesized. Their cytotoxicities against three human cancer cell lines (NCI-H226, HCT-116, and MDA-MB-231) and hDHODH inhibitory activities were also evaluated. Among them, compound H19, exhibited the strongest inhibitory activities (NCI-H226 IC50 = 0.95 µM, hDHODH IC50 = 0.21 µM). Further pharmacological investigations revealed that H19 exerted anticancer effects by inducing ferroptosis in NCI-H226 cells, with its cytotoxicity being reversed by ferroptosis inhibitors. This was supported by the intracellular growth or decline of ferroptosis markers, including lipid peroxidation, Fe2+, GSH, and 4-HNE. Overall, H19 emerges as a promising hDHODH inhibitor with potential anticancer properties warranting development.
Collapse
Affiliation(s)
- Jian-Fei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li-Hong Hong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shi-Ying Fan
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhan-Peng Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
29
|
Cui J, Chen Y, Yang Q, Zhao P, Yang M, Wang X, Mang G, Yan X, Wang D, Tong Z, Wang P, Kong Y, Wang N, Wang D, Dong N, Liu M, E M, Zhang M, Yu B. Protosappanin A Protects DOX-Induced Myocardial Injury and Cardiac Dysfunction by Targeting ACSL4/FTH1 Axis-Dependent Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310227. [PMID: 38984448 PMCID: PMC11425893 DOI: 10.1002/advs.202310227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Doxorubicin (DOX) is an effective anticancer agent, but its clinical utility is constrained by dose-dependent cardiotoxicity, partly due to cardiomyocyte ferroptosis. However, the progress of developing cardioprotective medications to counteract ferroptosis has encountered obstacles. Protosappanin A (PrA), an anti-inflammatory compound derived from hematoxylin, shows potential against DOX-induced cardiomyopathy (DIC). Here, it is reported that PrA alleviates myocardial damage and dysfunction by reducing DOX-induced ferroptosis and maintaining mitochondrial homeostasis. Subsequently, the molecular target of PrA through proteome microarray, molecular docking, and dynamics simulation is identified. Mechanistically, PrA physically binds with ferroptosis-related proteins acyl-CoA synthetase long-chain family member 4 (ACSL4) and ferritin heavy chain 1 (FTH1), ultimately inhibiting ACSL4 phosphorylation and subsequent phospholipid peroxidation, while also preventing FTH1 autophagic degradation and subsequent release of ferrous ions (Fe2+) release. Given the critical role of ferroptosis in the pathogenesis of ischemia-reperfusion (IR) injury, this further investigation posits that PrA can confer a protective effect against IR-induced cardiac damage by inhibiting ferroptosis. Overall, a novel pharmacological inhibitor is unveiled that targets ferroptosis and uncover a dual-regulated mechanism for cardiomyocyte ferroptosis in DIC, highlighting additional therapeutic options for chemodrug-induced cardiotoxicity and ferroptosis-triggered disorders.
Collapse
|
30
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
31
|
Yan CY, Zhu QQ, Guan CX, Xiong GL, Chen XX, Gong HB, Li JW, Ouyang SH, Kurihara H, Li YF, He RR. Antioxidant and Anti-Inflammatory Properties of Hydrolyzed Royal Jelly Peptide in Human Dermal Fibroblasts: Implications for Skin Health and Care Applications. Bioengineering (Basel) 2024; 11:496. [PMID: 38790362 PMCID: PMC11118532 DOI: 10.3390/bioengineering11050496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Hydrolyzed royal jelly peptide (RJP) has garnered attention for its health-promoting functions. However, the potential applications of RJP in skincare have not been fully explored. In this study, we prepared RJP through the enzymatic hydrolysis of royal jelly protein with trypsin and investigated its antioxidant and anti-inflammatory properties on primary human dermal fibroblasts (HDFs). Our results demonstrate that RJP effectively inhibits oxidative damage induced by H2O2 and lipid peroxidation triggered by AAPH and t-BuOOH in HDFs. This effect may be attributed to the ability of RJP to enhance the level of glutathione and the activities of catalase and glutathione peroxidase 4, as well as its excellent iron chelating capacity. Furthermore, RJP modulates the NLRP3 inflammasome-mediated inflammatory response in HDFs, suppressing the mRNA expressions of NLRP3 and IL-1β in the primer stage induced by LPS and the release of mature IL-1β induced by ATP, monosodium urate, or nigericin in the activation stage. RJP also represses the expressions of COX2 and iNOS induced by LPS. Finally, we reveal that RJP exhibits superior antioxidant and anti-inflammatory properties over unhydrolyzed royal jelly protein. These findings suggest that RJP exerts protective effects on skin cells through antioxidative and anti-inflammatory mechanisms, indicating its promise for potential therapeutic avenues for managing oxidative stress and inflammation-related skin disorders.
Collapse
Affiliation(s)
- Chang-Yu Yan
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Qian-Qian Zhu
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Cheng-Xi Guan
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Gui-Lan Xiong
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Xin-Xing Chen
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Hai-Biao Gong
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Jia-Wei Li
- Lihe (Zhuhai Hengqin) Biopharmaceutical Technology Co., Ltd., Zhuhai 519031, China
- Lihe (Macao) Pharmaceutical Technology Co., Ltd., Macao 999078, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China (H.K.)
| |
Collapse
|
32
|
Xu Y, Xing Z, Abdalla Ibrahim Suliman R, Liu Z, Tang F. Ferroptosis in liver cancer: a key role of post-translational modifications. Front Immunol 2024; 15:1375589. [PMID: 38650929 PMCID: PMC11033738 DOI: 10.3389/fimmu.2024.1375589] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Ferroptosis is an emerging form of regulated cell death in an oxidative stress- and iron-dependent manner, primarily induced by the over-production of reactive oxygen species (ROS). Manipulation of ferroptosis has been considered a promising therapeutic approach to inhibit liver tumor growth. Nevertheless, the development of resistance to ferroptosis in liver cancer poses a significant challenge in cancer treatment. Post-translational modifications (PTMs) are crucial enzymatic catalytic reactions that covalently regulate protein conformation, stability and cellular activities. Additionally, PTMs play pivotal roles in various biological processes and divergent programmed cell death, including ferroptosis. Importantly, key PTMs regulators involved in ferroptosis have been identified as potential targets for cancer therapy. PTMs function of two proteins, SLC7A11, GPX4 involved in ferroptosis resistance have been extensively investigated in recent years. This review will summarize the roles of PTMs in ferroptosis-related proteins in hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Ying Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Fengyuan Tang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Thinking Biomed (Beijing) Co., Ltd, Beijing Economic and Technological Development Zone, Beijing, China
| |
Collapse
|
33
|
Zhan X, Yang Y, Li Q, He F. The role of deubiquitinases in cardiac disease. Expert Rev Mol Med 2024; 26:e3. [PMID: 38525836 PMCID: PMC11062144 DOI: 10.1017/erm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
34
|
Pandey R, Chiu CC, Wang LF. Immunotherapy Study on Non-small-Cell Lung Cancer (NSCLC) Combined with Cytotoxic T Cells and miRNA34a. Mol Pharm 2024; 21:1364-1381. [PMID: 38291993 PMCID: PMC10915804 DOI: 10.1021/acs.molpharmaceut.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Immunotherapy has emerged as a promising approach for cancer treatment, and the use of microRNAs (miRNAs) as therapeutic agents has gained significant attention. In this study, we investigated the effectiveness of immunotherapy utilizing miRNA34a and Jurkat T cells in inducing cell death in non-small-cell lung cancer cells, specifically A549 cells. Moreover, we explored the impact of Jurkat T cell activation and miRNA34a delivery using iron oxide nanorods (IONRs) on the killing of cancer cells. A549 cells were cocultured with both activated and inactivated Jurkat T cells, both before and after the delivery of miRNA34a. Surprisingly, our results revealed that even inactive Jurkat T cells were capable of inducing cell death in cancer cells. This unexpected observation suggested the presence of alternative mechanisms by which Jurkat T cells can exert cytotoxic effects on cancer cells. We stimulated Jurkat T cells using anti-CD3/CD28 and analyzed their efficacy in killing A549 compared to that of the inactive Jurkat T cells in conjunction with miRNA34a. Our findings indicated that the activation of Jurkat T cells significantly enhanced their cytotoxic potential against cancer cells compared to their inactive counterparts. The combined treatment of A549 cells with activated Jurkat T cells and miRNA34a demonstrated the highest level of cancer cell death, suggesting a synergistic effect between Jurkat T cell activation and miRNA therapy. Besides the apoptosis mechanism for the Jurkat T cells' cytotoxic effects on A549 cells, we furthermore investigated the ferroptosis pathway, which was found to have an impact on the cancer cell killing due to the presence of miRNA34a and IONRs as the delivery agent inside the cancer cells.
Collapse
Affiliation(s)
- Richa Pandey
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department
of Biotechnology, Kaohsiung Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, No.70 Lien-Hai Road, Kaohsiung 804201, Taiwan
| |
Collapse
|
35
|
Gao Q, Li C, Zhong P, Yu Y, Luo Z, Chen H. GDF15 restrains myocardial ischemia-reperfusion injury through inhibiting GPX4 mediated ferroptosis. Aging (Albany NY) 2024; 16:617-626. [PMID: 38206295 PMCID: PMC10817394 DOI: 10.18632/aging.205402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Growth and differentiation factor 15 (GDF15) has been proved to regulate the process of Myocardial ischemia-reperfusion injury (MIRI), which is a serious complication of reperfusion therapy. The present study aimed to explore if GDF15 could regulate the MIRI-induced ferroptosis. METHOD MIRI animal model was established by ligating the left anterior descending coronary artery. Oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was established to imitate MIRI in vitro. The indicators of ferroptosis including mitochondrial damage, GPX4, FACL4, XCT4, and oxidative stress markers were evaluated. RESULTS Overexpression of GDF15 greatly inhibited MIRI, improved cardiac function, alleviated MIRI-induced ferroptosis. pc-DNA-GDF15 significantly inhibited the oxidative stress condition and inflammation response. The OGD/R-induced ferroptosis was also inhibited by pc-DNA-GDF15. CONCLUSION We proved that the MIRI-induced ferroptosis could by inhibited by pc-DNA-GDF15 through evaluating mitochondrial damage, MDA, GSH, and GSSG. Our research provides a new insight for the prevention and treatment of MIRI, and a new understanding for the mechanism of MIRI-induced ferroptosis.
Collapse
Affiliation(s)
- Qingfeng Gao
- Department of Cardiovascular Medicine, The 900 Hospital of the Joint Service Support Force of the People’s Liberation Army of China, Fuzhou 350001, Fujian, China
| | - Chao Li
- Department of Cardiovascular Medicine, The 900 Hospital of the Joint Service Support Force of the People’s Liberation Army of China, Fuzhou 350001, Fujian, China
| | - Peiqi Zhong
- Department of Cardiovascular Medicine, The 900 Hospital of the Joint Service Support Force of the People’s Liberation Army of China, Fuzhou 350001, Fujian, China
| | - Yunqiang Yu
- Department of Cardiovascular Medicine, The 900 Hospital of the Joint Service Support Force of the People’s Liberation Army of China, Fuzhou 350001, Fujian, China
| | - Zhurong Luo
- Department of Cardiovascular Medicine, The 900 Hospital of the Joint Service Support Force of the People’s Liberation Army of China, Fuzhou 350001, Fujian, China
| | - Hao Chen
- Department of Cardiovascular Medicine, The 900 Hospital of the Joint Service Support Force of the People’s Liberation Army of China, Fuzhou 350001, Fujian, China
| |
Collapse
|
36
|
Zhang J, Guo C. Current progress of ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1259219. [PMID: 37942067 PMCID: PMC10628442 DOI: 10.3389/fcvm.2023.1259219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
Ferroptosis, a newly recognized form of nonapoptotic regulated cell death, is characterized by iron-dependent lipid peroxidation. Biological processes, such as iron metabolism, lipid peroxidation, and amino acid metabolism, are involved in the process of ferroptosis. However, the related molecular mechanism of ferroptosis has not yet been completely clarified, and specific and sensitive biomarkers for ferroptosis need to be explored. Recently, studies have revealed that ferroptosis probably causes or exacerbates the progress of cardiovascular diseases, and could be the potential therapeutic target for cardiovascular diseases. In this review, we summarize the molecular mechanisms regulating ferroptosis, inducers or inhibitors of ferroptosis, and the current progresses of ferroptosis in cardiovascular diseases. Furthermore, we discuss the emerging challenges and future perspectives, which may provide novel insights into the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|