1
|
Wang Y, Hong J, Ge S, Wang T, Mei Z, He M, Liu Y, Fang J, Liu C, Yang L, Yuan Y. 9-O-monoethyl succinate berberine effectively blocks the PI3K/AKT signaling pathway by targeting Wnt5a protein in inhibiting osteosarcoma growth. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155430. [PMID: 39047413 DOI: 10.1016/j.phymed.2024.155430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary bone malignancy, mainly affecting children, adolescents, and young adults, followed by the elderly, with a high propensity for local invasion and metastasis. Although surgery combined with chemotherapy has greatly improved the prognosis of patients with OS, the prognosis for metastatic or recurrent OS is still unsatisfactory. The research community has struggled to develop an effective chemotherapy treatment regimen for this tumor. For the creation of an OS drug, our research team has effectively developed and manufactured a new drug named 9-O-monoethyl succinate berberine (B2). PURPOSE In this study, we aimed to investigate the roles and functions of B2 in the treatment of OS. METHODS Human OS cell lines and mouse OS cell lines were used in vitro cell experiments, while BALB/c mice and BALB/c nude mice were used in vivo animal experiments. To investigate the molecular mechanism of B2 treatment, antibody microarray analysis, proteomic analysis, quantitative real-time PCR, immunohistochemical labeling, and western blotting analysis were mostly carried out. We assessed the impact of B2 on OS therapy and the underlying molecular pathways based on in vivo and in vitro studies. RESULTS Our findings demonstrated that B2 has the ability to inhibit the proliferation, migration, and invasion of OS cell lines, while also induce apoptosis in vitro. Additionally, our results suggested that B2 could effectively impede the growth of OS and has less heart and lung damage than cisplatin in vivo. In terms of mechanism, we discovered that the Wnt5a protein is significantly expressed in OS cell lines. Knockdown of Wnt5a can restrict OS cell lines proliferation, and overexpression of Wnt5a had the opposite results. B2 also had a strong affinity with Wnt5a and can inhibit the PI3K/AKT signaling pathway by targeting Wnt5a. Tumor cells proliferation can be inhibited by blocking the PI3K/AKT signaling pathway, and Wnt5a-mediated inactivation of the PI3K/AKT signaling pathway after B2 treatment. In vitro and in vivo experiments with Wnt5a overexpression, B2 significantly inhibited tumor growth, migration, and invasion. Moreover, B2 and Wnt5a also have a strong structural binding ability (binding energy of -7.567 ± 0.084 kcal/mol, binding values of 2.860 ± 0.434 µM), and three hydrogen bonds are generated at the docking positions of amino acids GLN286, ASN288, and ASN292. CONCLUSION In summary, our study confirmed for the first time that the growth of OS is related to abnormal overexpression of Wnt5a protein, and designed a novel small molecule inhibitor named B2 targeting Wnt5a protein, which inhibits OS growth by mediating PI3K/AKT signaling pathway by targeting Wnt5a protein. Our research laid the groundwork for the promotion of B2 as a new anticancer drug and revealed an innovative chemotherapeutic strategy for OS therapy.
Collapse
Affiliation(s)
- Yanquan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jinhuan Hong
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shiyu Ge
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Zhongting Mei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Mingyu He
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Ying Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jiaxin Fang
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chuang Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Chen S, Wang L, Xu Z, Chen L, Li Q, Zhong F, Tang N, Song J, Zhou R. YTHDF3-mediated m6A modification of NKD1 regulates hepatocellular carcinoma invasion and metastasis by activating the WNT/β-catenin signaling axis. Exp Cell Res 2024; 442:114192. [PMID: 39127439 DOI: 10.1016/j.yexcr.2024.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
N6-methyladenosine (m6A) alteration is an epigenetic regulator widely involved in the tumorigenicity of hepatocellular carcinoma (HCC). The role of YTH N6-methyladenosine RNA binding protein F3 (YTHDF3), an m6A reader in HCC, requires further investigation. Here, we aim to explore the biological properties of YTHDF3 in HCC and its potential mechanisms. The predictive risk model for HCC was developed by analyzing the expression of genes associated with m6A in HCC using online datasets. WB and qPCR were employed to assess YTHDF3 expression in HCC and its correlation with the disease's clinicopathological characteristics. Both in vitro and in vivo methods were utilized to evaluate the biological effects of YTHDF3 in HCC. The potential targets of YTHDF3 were identified and confirmed using RNA-seq, meRIP-seq, and linear amplification and sequencing of cDNA ends (Lace-seq). We confirmed that YTHDF3 is overexpressed in HCC. Patients with higher YTHDF3 expression had a greater risk of cancer recurrence. In both in vitro and in vivo settings, YTHDF3 boosts the migration and invasion capabilities of HCC cells. Through multi-omics research, we identified YTHDF3's downstream target genes as NKD inhibitors of the WNT signaling pathway 1 (NKD1) and the WNT/β-catenin signaling pathway. With m6A modification, YTHDF3 suppresses the transcription and translation of NKD1. Additionally, NKD1 inhibited tumor growth by blocking the WNT/β-catenin signaling pathway. The investigation found that the oncogene YTHDF3 stimulates the WNT/β-catenin signaling pathway by m6A-dependently suppressing NKD1 expression in HCC cells. Our findings suggest that YTHDF3 regulates hepatocarcinogenesis, providing fresh perspectives on potential biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Siyan Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Lumin Wang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhenguo Xu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Lushan Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China; Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Quansen Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Fengjin Zhong
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Jun Song
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Ruixiang Zhou
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
3
|
Li F, Zeng C, Liu J, Wang L, Yuan X, Yuan L, Xia X, Huang W. The YTH domain-containing protein family: Emerging players in immunomodulation and tumour immunotherapy targets. Clin Transl Med 2024; 14:e1784. [PMID: 39135292 PMCID: PMC11319238 DOI: 10.1002/ctm2.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The modification of N6-methyladenosine (m6A) plays a pivotal role in tumor by altering both innate and adaptive immune systems through various pathways, including the regulation of messenger RNA. The YTH domain protein family, acting as "readers" of m6A modifications, affects RNA splicing, stability, and immunogenicity, thereby playing essential roles in immune regulation and antitumor immunity. Despite their significance, the impact of the YTH domain protein family on tumor initiation and progression, as well as their involvement in tumor immune regulation and therapy, remains underexplored and lacks comprehensive review. CONCLUSION This review introduces the molecular characteristics of the YTH domain protein family and their physiological and pathological roles in biological behavior, emphasizing their mechanisms in regulating immune responses and antitumor immunity. Additionally, the review discusses the roles of the YTH domain protein family in immune-related diseases and tumor resistance, highlighting that abnormal expression or dysfunction of YTH proteins is closely linked to tumor resistance. KEY POINTS This review provides an in-depth understanding of the YTH domain protein family in immune regulation and antitumor immunity, suggesting new strategies and directions for immunotherapy of related diseases. These insights not only deepen our comprehension of m6A modifications and YTH protein functions but also pave the way for future research and clinical applications.
Collapse
Affiliation(s)
- Fenghe Li
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Chong Zeng
- Department of Respiratory and Critical Care MedicineThe Seventh Affiliated Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Jie Liu
- Department of PathologyThe Affiliated Changsha Central Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, School of Basic Medical Science, Central South UniversityChangshaHunanChina
| | - Xiaorui Yuan
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Yuan
- Department of Nuclear MedicineThe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaomeng Xia
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Huang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center of Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Research Center of Carcinogenesis and Targeted TherapyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Zhou X, Hang S, Wang Q, Xu L, Wang P. Decoding the Role of O-GlcNAcylation in Hepatocellular Carcinoma. Biomolecules 2024; 14:908. [PMID: 39199296 PMCID: PMC11353135 DOI: 10.3390/biom14080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Post-translational modifications (PTMs) influence protein functionality by modulating protein stability, localization, and interactions with other molecules, thereby controlling various cellular processes. Common PTMs include phosphorylation, acetylation, ubiquitination, glycosylation, SUMOylation, methylation, sulfation, and nitrosylation. Among these modifications, O-GlcNAcylation has been shown to play a critical role in cancer development and progression, especially in hepatocellular carcinoma (HCC). This review outlines the role of O-GlcNAcylation in the development and progression of HCC. Moreover, we delve into the underlying mechanisms of O-GlcNAcylation in HCC and highlight compounds that target O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) to improve treatment outcomes. Understanding the role of O-GlcNAcylation in HCC will offer insights into potential therapeutic strategies targeting OGT and OGA, which could improve treatment for patients with HCC.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Sirui Hang
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Qingqing Wang
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Liu Xu
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou 310000, China
| |
Collapse
|
5
|
Hong W, Zhang Y, Wang S, Li Z, Zheng D, Hsu S, Zhou J, Fan J, Chen Z, Xia X, Zeng Z, Gao Q, Yu M, Du S. RECQL4 Inhibits Radiation-Induced Tumor Immune Awakening via Suppressing the cGAS-STING Pathway in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308009. [PMID: 38381090 DOI: 10.1002/advs.202308009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Siwei Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zongjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; Institute for Biotechnology, St. John's University, Queens, New York, NY10003, USA
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| |
Collapse
|
6
|
Chen J, Sun S, Li H, Cai X, Wan C. IL-22 signaling promotes sorafenib resistance in hepatocellular carcinoma via STAT3/CD155 signaling axis. Front Immunol 2024; 15:1373321. [PMID: 38596684 PMCID: PMC11003268 DOI: 10.3389/fimmu.2024.1373321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Sorafenib is currently the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Nevertheless, sorafenib resistance remains a huge challenge in the clinic. Therefore, it is urgent to elucidate the mechanisms underlying sorafenib resistance for developing novel treatment strategies for advanced HCC. In this study, we aimed to investigate the role and mechanisms of interleukin-22 (IL-22) in sorafenib resistance in HCC. Methods The in vitro experiments using HCC cell lines and in vivo studies with a nude mouse model were used. Calcium staining, chromatin immunoprecipitation, lactate dehydrogenase release and luciferase reporter assays were employed to explore the expression and roles of IL-22, STAT3 and CD155 in sorafenib resistance. Results Our clinical results demonstrated a significant correlation between elevated IL-22 expression and poor prognosis in HCC. Analysis of transcriptomic data from the phase-3 STORM-trial (BIOSTORM) suggested that STAT3 signaling activation and natural killer (NK) cell infiltration may associate sorafenib responses. STAT3 signaling could be activated by IL-22 administration in HCC cells, and then enhanced sorafenib resistance in HCC cells by promoting cell proliferation and reducing apoptosis in vitro and in vivo. Further, we found IL-22/STAT3 axis can transcriptionally upregulate CD155 expression in HCC cells, which could significantly reduce NK cell-mediated HCC cell lysis in a co-culture system. Conclusions Collectively, IL-22 could contribute to sorafenib resistance in HCC by activating STAT3/CD155 signaling axis to decrease the sensitivities of tumor cells to sorafenib-mediated direct cytotoxicity and NK cell-mediated lysis. These findings deepen the understanding of how sorafenib resistance develops in HCC in terms of IL-22/STAT3 signaling pathway, and provide potential targets to overcome sorafenib resistance in patients with advanced HCC.
Collapse
Affiliation(s)
- Junzhang Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiran Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|