1
|
Chen W, Feng H, Mo Y, Pan Z, Ji S, Liang H, Shen XC, Jiang BP. Hyaluronic acid-functionalized ruthenium photothermal nanoenzyme for enhancing osteosarcoma chemotherapy: Cascade targeting and bidirectional modulation of drug resistance. Carbohydr Polym 2025; 349:122945. [PMID: 39643406 DOI: 10.1016/j.carbpol.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024]
Abstract
Insufficient drug delivery efficiency in vivo and robust drug resistance are two major factors to induce suboptimal efficacy in chemotherapy of osteosarcoma (OS). To address these challenges, we developed polysaccharide hyaluronic acid (HA)-functionalized ruthenium nanoaggregates (Ru NAs) to enhance the chemotherapy of doxorubicin (DOX) for OS. These NAs, comprising Ru nanoparticles (NPs) and alendronate-modified HA (HA-ALN), effectively load DOX, resulting in DOX@Ru-HA-ALN NAs. The combination of HA and ALN in NAs ensures outstanding cascade targeting towards tumor-invaded bone tissues and CD44-overexpressing tumor cells, maximizing therapeutic efficacy while minimizing off-target effects. Concurrently, the Ru NPs in NAs function as "smart" photoenzymatic agent to not only in situ relieve hypoxia of OS via the catalysis of overexpressed H2O2 to produce O2, but also generate mild photothermal effect under 808-nm laser irradiation. They can bidirectionally overcome drug resistance of DOX via downregulation of resistance-related factors including multi-drug resistant associate protein, P-glycoprotein, heat shock factor 1, etc. The integration of cascade targeting with bidirectional modulation of drug resistance positions Ru-HA-ALN NAs to substantially enhance DOX chemotherapy for OS. Therefore, the present work highlights the potential of polysaccharide-functionalized nanomaterials in advancing tumor chemotherapy by addressing challenges of both delivery efficiency and drug resistance.
Collapse
Affiliation(s)
- Weifeng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Hao Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yinyin Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Zhihui Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
2
|
Yan J, Wei D, Zhao Z, Sun K, Sun Y. Osteosarcoma-targeting Pt IV prodrug amphiphile for enhanced chemo-immunotherapy via Ca 2+ trapping. Acta Biomater 2024:S1742-7061(24)00767-0. [PMID: 39719178 DOI: 10.1016/j.actbio.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Platinum (PtII)-based anticancer agents exhibit a lack of selectivity in the treatment of osteosarcoma, resulting in significant toxicity. Furthermore, immune surveillance withinthe tumor microenvironment impedes the uptake of platinum drugs by osteosarcoma cells. To overcome these challenges, an oxaliplatin-based PtIV prodrug amphiphile (Lipo-OXA-ALN) was designed and synthesized by incorporatingan osteosarcoma-targeting alendronate (ALN) alongside a lipid tail. The lipid nanoparticles (ALN-OXA), which self-assemble from Lipo-OXA-ALN, enhanced intracellular platinum uptake due to their superior Ca2+ trapping ability and significantly inhibit osteosarcoma cell activity. Moreover, ALN-OXA exhibited potent targeting capabilities, effectively suppressing osteosarcoma growth while preventing bone destruction. Importantly, ALN-OXA induces a series of immune responses characterized by the activation of immune cells, maturation of dendritic cells, and secretion of related cytokines, followed by the activation and infiltration of T lymphocytes and a significant increase in the ratio of cytotoxic T cells. Additionally, the ratio of M1/M2 macrophages increased markedly after ALN-OXA treatment, suggesting potential reprogramming of the tumor microenvironment by ALN-OXA. Overall, the improved therapeutic efficacy against osteosarcoma demonstrates that the PtIV prodrug amphiphile represents a promising strategy for combining targeted chemotherapy with strategies aimed at reversing immune suppression. STATEMENT OF SIGNIFICANCE: Platinum (PtII)-based chemotherapy for osteosarcoma faces challenges due to poor tumor selectivity, leading to suboptimal efficacy and increased toxicity. Additionally, the osteosarcoma microenvironment impedes effective drug delivery. To overcome these limitations, we developed an oxaliplatin-based PtIV prodrug nanoparticle (ALN-OXA) for targeted chemo-immunotherapy. ALN-OXA showed significant in vivo efficacy, effectively preventing bone damage and enhancing the immune microenvironment to improve treatment outcomes. This innovative approach not only targets the tumor more efficiently but also boosts immune response, offering a promising strategy for tumor blockade, tumor starvation, and other therapeutic applications in osteosarcoma treatment.
Collapse
Affiliation(s)
- Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Zijian Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kaichuang Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
3
|
Zhu W, Yu M, Wang M, Zhang M, Hai Z. Sequential self-assembly and release of a camptothecin prodrug for tumor-targeting therapy. NANOSCALE 2024. [PMID: 39648922 DOI: 10.1039/d4nr03519d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Chemotherapy is the most commonly used method to treat malignant tumors with a wide range of drugs. However, chemotherapeutic drugs are characterized by poor solubility, low stability and specificity, as well as drug resistance, which led to their limited bioavailability and severe adverse effects. Therefore, most researches focus on one or two strategies while a few researches focus on three strategies to improve the efficacy of drugs. Herein, we combined three strategies (targeted therapy, prodrug design and drug delivery) to exploit a self-assembled camptothecin (CPT) prodrug (CPT-SS-FFEYp-Biotin) for enhancing therapeutic efficacy and reducing side effects of CPT. CPT-SS-FFEYp-Biotin enters into tumor cells following the recognition between biotin and biotin receptors. Moreover, the over-expressed alkaline phosphatase (ALP) on cell membranes specifically dephosphorylates CPT-SS-FFEYp-Biotin to CPT-SS-FFEY-Biotin, which self-assembles into a CPT hydrogel with the local enrichment of CPT. Subsequently, excess glutathione (GSH) in tumor cells can reduce the disulfide bond of CPT-SS-FFEY-Biotin to slowly release CPT for sustained tumor therapy. Cell experiments demonstrated that CPT-SS-FFEYp-Biotin enhances therapeutic efficacy of CPT on tumor cells while being safer to normal cells than CPT. Moreover, CPT-SS-FFEYp-Biotin effectively improved anti-tumor treatment of CPT in vivo. We envision that the integration of these three strategies is helpful to exploit a variety of prodrugs for effective anti-tumor treatment in the future.
Collapse
Affiliation(s)
- Wujuan Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Minghui Yu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Minghui Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Miaomiao Zhang
- College of Chemistry and Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China.
| | - Zijuan Hai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
4
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
5
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
6
|
XU LICHEN, ZHANG PAN, ZHANG GUIQI, SHEN ZHAOLIANG, BAI XIZHUANG. MiR-150-5p inhibits cell proliferation and metastasis by targeting FTO in osteosarcoma. Oncol Res 2024; 32:1777-1789. [PMID: 39449798 PMCID: PMC11497191 DOI: 10.32604/or.2024.047704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/07/2024] [Indexed: 10/26/2024] Open
Abstract
Background Osteosarcoma (OS), recognized as the predominant malignant tumor originating from bones, necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies. The role of fat mass and obesity-associated (FTO) in OS, particularly its correlation with malignant traits, and the fundamental mechanism, remains to be elucidated. Materials and Methods 1. The FTO expression and survival rate in tumors were analyzed. 2. FTO in OS cell lines was quantified utilizing western blot and PCR. 3. FTO was upregulated and downregulated separately in MG63. 4. The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8, colony formation, wound healing, and Transwell assays. 5. The expression of miR-150-5p in OS cells-derived exosomes was identified. 6. The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay. 7. The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated. Results The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate. Furthermore, the downregulation of FTO significantly impeded the growth and metastasis of OS cells. Additionally, miR-150-5p, which was downregulated in both OS cells and their derived exosomes, was found to bind to the 3'-UTR of FTO through dual luciferase experiments. Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability. Conclusions We identified elevated levels of FTO in OS, which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes. It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.
Collapse
Affiliation(s)
- LICHEN XU
- Dalian Medical University, Dalian, 116044, China
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - PAN ZHANG
- Department of Orthopaedics, The People’s Hospital of China Medical University, People’s Hospital of Liaoning Province, Shenyang, 110016, China
| | - GUIQI ZHANG
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - ZHAOLIANG SHEN
- Department of Orthopedic, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - XIZHUANG BAI
- Dalian Medical University, Dalian, 116044, China
- Department of Orthopaedics, The People’s Hospital of China Medical University, People’s Hospital of Liaoning Province, Shenyang, 110016, China
| |
Collapse
|
7
|
Yu H, Yan Z, Dreiss CA, Gaitano GG, Jarvis JA, Gentleman E, da Silva RMP, Grigoriadis AE. Injectable PEG Hydrogels with Tissue-Like Viscoelasticity Formed through Reversible Alendronate-Calcium Phosphate Crosslinking for Cell-Material Interactions. Adv Healthc Mater 2024; 13:e2400472. [PMID: 38809180 DOI: 10.1002/adhm.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 05/30/2024]
Abstract
Synthetic hydrogels provide controllable 3D environments, which can be used to study fundamental biological phenomena. The growing body of evidence that cell behavior depends upon hydrogel stress relaxation creates a high demand for hydrogels with tissue-like viscoelastic properties. Here, a unique platform of synthetic polyethylene glycol (PEG) hydrogels in which star-shaped PEG molecules are conjugated with alendronate and/or RGD peptides, attaining modifiable degradability as well as flexible cell adhesion, is created. Novel reversible ionic interactions between alendronate and calcium phosphate nanoparticles, leading to versatile viscoelastic properties with varying initial elastic modulus and stress relaxation time, are identified. This new crosslinking mechanism provides shear-thinning properties resulting in differential cellular responses between cancer cells and stem cells. The novel hydrogel system is an improved design to the other ionic crosslink platforms and opens new avenues for the development of pathologically relevant cancer models, as well as minimally invasive approaches for cell delivery for potential regenerative therapies.
Collapse
Affiliation(s)
- Hongqiang Yu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Ziqian Yan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Cecile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Gustavo G Gaitano
- Department of Chemistry, University of Navarra, Pamplona, 31080, Spain
| | - James A Jarvis
- Randall Division of Cell and Molecular Biophysics and NMR Facility, Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Ricardo M P da Silva
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | | |
Collapse
|
8
|
Zhou XY, Wang CK, Shen ZF, Wang YF, Li YH, Hu YN, Zhang P, Zhang Q. Recent research progress on tumour-specific responsive hydrogels. J Mater Chem B 2024. [PMID: 38949411 DOI: 10.1039/d4tb00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Most existing hydrogels, even recently developed injectable hydrogels that undergo a reversible sol-gel phase transition in response to external stimuli, are designed to gel immediately before or after implantation/injection to prevent the free diffusion of materials and drugs; however, the property of immediate gelation leads to a very weak tumour-targeting ability, limiting their application in anticancer therapy. Therefore, the development of tumour-specific responsive hydrogels for anticancer therapy is imperative because tumour-specific responses improve their tumour-targeting efficacy, increase therapeutic effects, and decrease toxicity and side effects. In this review, we introduce the following three types of tumour-responsive hydrogels: (1) hydrogels that gel specifically at the tumour site; (2) hydrogels that decompose specifically at the tumour site; and (3) hydrogels that react specifically with tumours. For each type, their compositions, the mechanisms of tumour-specific responsiveness and their applications in anticancer treatment are comprehensively discussed.
Collapse
Affiliation(s)
- Xuan-Yi Zhou
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen-Kai Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Hang Li
- The Third Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Ning Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Sun K, Yuan L, Chen S, Sun Y, Wei D. Alendronate Pt IV Prodrug Amphiphile for Enhanced Chemotherapy Targeting and Bone Destruction Inhibition in Osteosarcoma. Adv Healthc Mater 2024; 13:e2302746. [PMID: 37988194 DOI: 10.1002/adhm.202302746] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Chemotherapy remains the primary treatment method for osteosarcoma after surgery. However, the lack of selectivity of chemotherapy for osteosarcoma leads to unpredictable therapeutic effects, undesirable side effects, and drug resistance. A platinum(IV) (PtIV ) prodrug amphiphile (ALN-PtIV -Lipo) covalently bound to alendronate (ALN) and a lipid tail is designed to overcome these limitations. ALN-PtIV -Lipo can self-assemble into PtIV lipid nanoparticles (APtIV ) for osteosarcoma targeting chemotherapy and bone destruction inhibition. It is demonstrated that APtIV achieved an eightfold increase in the eradication of osteosarcoma cells compared to cisplatin and threefold selective inhibition of osteosarcoma cells over breast cancer cells via APtIV in vitro. After intravenous injection, APtIV effectively accumulates at the osteosarcoma site in vivo, resulting in significantly suppressed primary osteosarcoma growth, and alleviation of bone destruction. Therefore, APtIV delivers a promising solution for enhanced chemotherapy targeting and bone destruction inhibition in osteosarcoma.
Collapse
Affiliation(s)
- Kaichuang Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Lu Yuan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Shen Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
10
|
Liu H, Huang K, Zhang H, Liu X, Jiang H, Wang X. Photo-Driven In Situ Solidification of Whole Cells through Inhibition of Trogocytosis for Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0318. [PMID: 38384327 PMCID: PMC10879965 DOI: 10.34133/research.0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Achieving antitumor immunotherapy based on hybridization of multiple types of inactivated cells has attracted a lot of attention. However, the hybridized cells of disordered structure could result in the shedding of antigens and their transfer to immune cells, which suppresses tumor immunity through trogocytosis. Here, we report a strategy for in situ solidification of tumor whole cell by biomineralization for sustained stimulation of antitumor immunity. The near-infrared light was used to accelerate the breaking of Au=P bonds in auranofin, and the exposed Au atoms biomineralize at the secondary structure (β-corner) of the protein to form Au nanocrystals with in situ protein coronas in tumor cells. Au nanocrystals are anchored to the tumor cells through protein coronas, which fixes the morphology and antigens of whole tumor cells, rendering them physiologically inactive. Interestingly, this solidified tumor cell prevents immune cells from undergoing trogocytosis, which inhibits proximal and distal tumor growth. Thus, this study presents the strategy of solidified cells and its potential application in tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|