1
|
Singh N, Singh A, Bhatia D. Self-Assembled DNA-Collagen Bioactive Scaffolds Promote Cellular Uptake and Neuronal Differentiation. ACS Biomater Sci Eng 2024. [PMID: 39630658 DOI: 10.1021/acsbiomaterials.4c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Different modalities of DNA/collagen complexes have been utilized primarily for gene delivery studies. However, very few studies have investigated the potential of these complexes as bioactive scaffolds. Further, no studies have characterized the DNA/collagen complex formed from the interaction of the self-assembled DNA macrostructure and collagen. Toward this investigation, we report herein the fabrication of novel bioactive scaffolds formed from the interaction of sequence-specific, self-assembled DNA macrostructure and collagen type I. Varying molar ratios of DNA and collagen resulted in highly intertwined fibrous scaffolds with different fibrillar thicknesses. The formed scaffolds were biocompatible and presented as a soft matrix for cell growth and proliferation. Cells cultured on DNA/collagen scaffolds promoted the enhanced cellular uptake of transferrin, and the potential of DNA/collagen scaffolds to induce neuronal cell differentiation was further investigated. The DNA/collagen scaffolds promoted neuronal differentiation of precursor cells with extensive neurite growth in comparison to the control groups. These novel, self-assembled DNA/collagen scaffolds could serve as a platform for the development of various bioactive scaffolds with potential applications in neuroscience, drug delivery, tissue engineering, and in vitro cell culture.
Collapse
Affiliation(s)
- Nihal Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ankur Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
2
|
Sun Y, Wu X, Li J, Radiom M, Mezzenga R, Verma CS, Yu J, Miserez A. Phase-separating peptide coacervates with programmable material properties for universal intracellular delivery of macromolecules. Nat Commun 2024; 15:10094. [PMID: 39572548 PMCID: PMC11582321 DOI: 10.1038/s41467-024-54463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Phase-separating peptides (PSPs) self-assembling into coacervate microdroplets (CMs) are a promising class of intracellular delivery vehicles that can release macromolecular modalities deployed in a wide range of therapeutic treatments. However, the molecular grammar governing intracellular uptake and release kinetics of CMs remains elusive. Here, we systematically manipulate the sequence of PSPs to unravel the relationships between their molecular structure, the physical properties of the resulting CMs, and their delivery efficacy. We show that a few amino acid alterations are sufficient to modulate the viscoelastic properties of CMs towards either a gel-like or a liquid-like state as well as their binding interaction with cellular membranes, collectively enabling to tune the kinetics of intracellular cargo release. We also demonstrate that the optimized PSPs CMs display excellent transfection efficiency in hard-to-transfect cells such as primary fibroblasts and immune cells. Our findings provide molecular guidelines to precisely program the material properties of PSP CMs and achieve tunable cellular uptake and release kinetics depending on the cargo modality, with broad implications for therapeutic applications such as protein, gene, and immune cell therapies.
Collapse
Affiliation(s)
- Yue Sun
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Xi Wu
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Jianguo Li
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, Matrix, 138671, Singapore, Singapore
- Singapore Eye Research Institute, 169856, Singapore, Singapore
| | - Milad Radiom
- Department of Health Sciences & Technology, ETH Zurich, 8092, Zürich, Switzerland
| | - Raffaele Mezzenga
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
- Department of Health Sciences & Technology, ETH Zurich, 8092, Zürich, Switzerland
- Department of Materials, ETH Zurich, 8092, Zürich, Switzerland
| | - Chandra Shekhar Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, Matrix, 138671, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Jing Yu
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore, Singapore
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore.
| |
Collapse
|
3
|
Liu H, Yu Z, Liu L, Dong S. Cell Wall Binding Strategies Based on Cu 3SbS 3 Nanoparticles for Selective Bacterial Elimination and Promotion of Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33038-33052. [PMID: 38961578 DOI: 10.1021/acsami.4c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
4
|
Fernandes S, Cassani M, Cavalieri F, Forte G, Caruso F. Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305769. [PMID: 38054651 PMCID: PMC10885677 DOI: 10.1002/advs.202305769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Indexed: 12/07/2023]
Abstract
The application of lipid-based nanoparticles for COVID-19 vaccines and transthyretin-mediated amyloidosis treatment have highlighted their potential for translation to cancer therapy. However, their use in delivering drugs to solid tumors is limited by ineffective targeting, heterogeneous organ distribution, systemic inflammatory responses, and insufficient drug accumulation at the tumor. Instead, the use of lipid-based nanoparticles to remotely activate immune system responses is an emerging effective strategy. Despite this approach showing potential for treating hematological cancers, its application to treat solid tumors is hampered by the selection of eligible targets, tumor heterogeneity, and ineffective penetration of activated T cells within the tumor. Notwithstanding, the use of lipid-based nanoparticles for immunotherapy is projected to revolutionize cancer therapy, with the ultimate goal of rendering cancer a chronic disease. However, the translational success is likely to depend on the use of predictive tumor models in preclinical studies, simulating the complexity of the tumor microenvironment (e.g., the fibrotic extracellular matrix that impairs therapeutic outcomes) and stimulating tumor progression. This review compiles recent advances in the field of antitumor lipid-based nanoparticles and highlights emerging therapeutic approaches (e.g., mechanotherapy) to modulate tumor stiffness and improve T cell infiltration, and the use of organoids to better guide therapeutic outcomes.
Collapse
Affiliation(s)
- Soraia Fernandes
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Marco Cassani
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonSE5 9NUUK
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|