Li Z, Gao J, Wang B, Zhang H, Tian Y, Peng R, Yao Q. Ectopic expression of an Old Yellow Enzyme (OYE3) gene from Saccharomyces cerevisiae increases the tolerance and phytoremediation of 2-nitroaniline in rice.
Gene 2024;
906:148239. [PMID:
38325666 DOI:
10.1016/j.gene.2024.148239]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
2-nitroaniline (2-NA) is an environmental pollutant and has been extensively used as intermediates in organic synthesis. The presence of 2-NA in the environment is not only harmful for aquatic life but also mutagenic for human beings. In this study, we constructed transgenic rice expressing an Old Yellow Enzyme gene, ScOYE3, from Saccharomyces cerevisiae. The ScOYE3 transgenic plants were comprehensively investigated for their biochemical responses to 2-NA treatment and their 2-NA phytoremediation capabilities. Our results showed that the rice seedlings exposed to 2-NA stress, showed growth inhibition and biomass reduction. However, the transgenic plants exhibited strong tolerance to 2-NA stress compared to wild-type plants. Ectopic expression of ScOYE3 could effectively protect transgenic plants against 2-NA damage, which resulted in less reactive oxygen species accumulation in transgenic plants than that in wild-type plants. Our phytoremediation assay revealed that transgenic plants could eliminate more 2-NA from the medium than wild-type plants. Moreover, omics analysis was performed in order to get a deeper insight into the mechanism of ScOYE3-mediated 2-NA transformation in rice. Altogether, the function of ScOYE3 during 2-NA detoxification was characterized for the first time, which serves as strong theoretical support for the phytoremediation potential of 2-NA by Old Yellow Enzyme genes.
Collapse