1
|
Noh KM, Jangid AK, Park J, Kim S, Kim K. Membrane-immobilized gemcitabine for cancer-targetable NK cell surface engineering. J Mater Chem B 2024. [PMID: 39465499 DOI: 10.1039/d4tb01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although natural killer (NK) cell-based adoptive cell transfer (ACT) has shown promise in cancer immunotherapy, its efficacy against solid tumors is limited in the immunosuppressive tumor microenvironment (TME). Combinatorial therapies involving chemotherapeutic drugs such as gemcitabine (Gem) and NK cells have been developed to modulate the TME; however, their clinical application is constrained by low drug delivery efficiency and significant off-target toxicity. In this study, we developed cell membrane-immobilized Gem conjugates (i.e., lipid-Gem conjugates), designed to anchor seamlessly onto NK cell surfaces. Our modular-designed ex vivo cell surface engineeringmaterials comprise a lipid anchor for membrane immobilization, poly(ethylene glycol) to inhibit endocytosis, a disulfide bond as cleavable linker by glutathione (GSH) released during cancer cell lysis, and Gem for targeted sensitization. We demonstrated that the intrinsic properties of NK cells, such as proliferation and surface ligand availability, were preserved despite coating with lipid-Gem conjugates. Moreover, delivery of Gem prodrugs by lipid-Gem coated NK (GCNK) cells was shown to enhance antitumor efficacy against pancreatic cancer cells (PANC-1) through the following mechanisms: (1) NK cells recognized and attacked cancer cells, (2) intracellular GSH was leaked out from the lysed cancer cells, enabling cleavage of disulfide bond, (3) released Gem from the GCNK cells delivered to the target cells, (4) Gem upregulated MHC class I-related chain A and B on cancer cells, and (5) thereby activating NK cells led to enhance antitumor efficacy. The simultaneous co-delivery of membrane-immobilized Gem with NK cells could potentially facilitate both immune synapse-mediated cancer recognition and chemotherapeutic effects, offering a promising approach to enhance the anticancer efficacy of conventional ACTs.
Collapse
Affiliation(s)
- Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Jaewon Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
2
|
Chen H, Bao Y, Li X, Chen F, Sugimura R, Zeng X, Xia J. Cell Surface Engineering by Phase-Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy. Angew Chem Int Ed Engl 2024; 63:e202410566. [PMID: 39103291 DOI: 10.1002/anie.202410566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024]
Abstract
Cell therapies such as CAR-T have demonstrated significant clinical successes, driving the investigation of immune cell surface engineering using natural and synthetic materials to enhance their therapeutic performance. However, many of these materials do not fully replicate the dynamic nature of the extracellular matrix (ECM). This study presents a cell surface engineering strategy that utilizes phase-separated peptide coacervates to decorate the surface of immune cells. We meticulously designed a tripeptide, Fmoc-Lys-Gly-Dopa-OH (KGdelta; Fmoc=fluorenylmethyloxycarbonyl; delta=Dopa, dihydroxyphenylalanine), that forms coacervates in aqueous solution via phase separation. These coacervates, mirroring the phase separation properties of ECM proteins, coat the natural killer (NK) cell surface with the assistance of Fe3+ ions and create an outer layer capable of encapsulating monoclonal antibodies (mAb), such as Trastuzumab. The antibody-embedded coacervate layer equips the NK cells with the ability to recognize cancer cells and eliminate them through enhanced antibody-dependent cellular cytotoxicity (ADCC). This work thus presents a unique strategy of cell surface functionalization and demonstrates its use in displaying cancer-targeting mAb for cancer therapies, highlighting its potential application in the field of cancer therapy.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Xiaojing Li
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Fangke Chen
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Ryohichi Sugimura
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 99999, Hong Kong SAR, China
| | - Xiangze Zeng
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| |
Collapse
|
3
|
Sato F, Alejandra HPL, Takemae H, Inagaki NF, Ito T, Tera M. Enhancing Cell Aggregation and Migration via Double-Click Cross-Linking with Azide-Modified Hyaluronic Acid. Bioconjug Chem 2024; 35:1318-1323. [PMID: 39213494 DOI: 10.1021/acs.bioconjchem.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We present a novel approach to the formation of cell aggregates by employing click chemistry with water-soluble zwitterionic dibenzo cyclooctadiyne (WS-CODY) and azide-modified hyaluronic acid (HA-N3) as a linker to facilitate rapid and stable cell aggregation. By optimizing the concentrations of HA-N3 and WS-CODY, we achieved efficient cross-linking between azide-modified cell surfaces and HA-N3, generating cell aggregates within 10 min, and the resulting aggregates remained stable for up to 5 days, with cell viability maintained at approximately 80%. Systematic experiments revealed that a stoichiometric balance between HA-N3 and WS-CODY is important for effective cross-linking, highlighting the roles of both cell-surface azide modification and HA in the aggregate formation. We also investigated the genetic basis of altered cell behavior within these aggregates. Transcriptome analysis (RNA-seq) of aggregates postcultivation revealed a marked fluctuation of genes associated with 'cell migration' and 'cell adhesion', including notable changes in the expression of HYAL1, ICAM-1, CEACAM5 and RHOB. These findings suggest that HA-N3-mediated cell aggregation can induce intrinsic cellular responses that not only facilitate cell aggregate formation but also modulate cell-matrix interactions. We term this phenomenon 'chemo-resilience', The simplicity and efficacy of this click chemistry-based approach suggest it may have broad applicability for forming cell aggregates and modulating cell-matrix interactions in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Fumiya Sato
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Hernandez Paniagua Liliana Alejandra
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Guo P, Zhang X, Chen J, Chen X, Jiang YB, Jiang T. On-Demand Elongation of Peptide Nanofibrils at Cellular Interfaces to Modulate Cell-Cell Interactions. NANO LETTERS 2024; 24:11194-11201. [PMID: 39213611 DOI: 10.1021/acs.nanolett.4c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural cells can achieve specific cell-cell interactions by enriching nonspecific binding molecules on demand at intercellular contact faces, a pathway currently beyond synthetic capabilities. We are inspired to construct responsive peptide fibrils on cell surfaces, which elongate upon encountering target cells while maintaining a short length when contacting competing cells, as directed by a strand-displacement reaction arranged on target cell surfaces. With the display of ligands that bind to both target and competing cells, the contact-induced, region-selective fibril elongation selectively promotes host-target cell interactions via the accumulation of nonspecific ligands between matched cells. This approach is effective in guiding natural killer cells, the broad-spectrum effector lymphocytes, to eliminate specific cancer cells. In contrast to conventional methods relying on target cell-specific binding molecules for the desired cellular interactions, this dynamic scaffold-based approach would broaden the scope of cell combinations for manipulation and enhance the adjustability of cell behaviors for future applications.
Collapse
Affiliation(s)
- Pan Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Xingjing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Jingsheng Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Xiaoyong Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| |
Collapse
|
5
|
Lavrador P, Moura BS, Almeida-Pinto J, Gaspar VM, Mano JF. Engineered nascent living human tissues with unit programmability. NATURE MATERIALS 2024:10.1038/s41563-024-01958-1. [PMID: 39117911 DOI: 10.1038/s41563-024-01958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/25/2024] [Indexed: 08/10/2024]
Abstract
Leveraging human cells as materials precursors is a promising approach for fabricating living materials with tissue-like functionalities and cellular programmability. Here we describe a set of cellular units with metabolically engineered glycoproteins that allow cells to tether together to function as macrotissue building blocks and bioeffectors. The generated human living materials, termed as Cellgels, can be rapidly assembled in a wide variety of programmable three-dimensional configurations with physiologically relevant cell densities (up to 108 cells per cm3), tunable mechanical properties and handleability. Cellgels inherit the ability of living cells to sense and respond to their environment, showing autonomous tissue-integrative behaviour, mechanical maturation, biological self-healing, biospecific adhesion and capacity to promote wound healing. These living features also enable the modular bottom-up assembly of multiscale constructs, which are reminiscent of human tissue interfaces with heterogeneous composition. This technology can potentially be extended to any human cell type, unlocking the possibility for fabricating living materials that harness the intrinsic biofunctionalities of biological systems.
Collapse
Affiliation(s)
- Pedro Lavrador
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Beatriz S Moura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - José Almeida-Pinto
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
6
|
Geng H, Zhi S, Zhou X, Yan Y, Zhang G, Dai S, Lv S, Bi S. Self-Powered Engineering of Cell Membrane Receptors to On-Demand Regulate Cellular Behaviors. NANO LETTERS 2024; 24:7895-7902. [PMID: 38913401 DOI: 10.1021/acs.nanolett.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
On-demand engineering of cell membrane receptors to nongenetically intervene in cellular behaviors is still a challenge. Herein, a membraneless enzyme biofuel cell-based self-powered biosensor (EBFC-SPB) was developed for autonomously and precisely releasing Zn2+ to initiate DNAzyme-based reprogramming of cell membrane receptors, which further mediates signal transduction to regulate cellular behaviors. The critical component of EBFC-SPB is a hydrogel film on a biocathode which is prepared using a Fe3+-cross-linked alginate hydrogel film loaded with Zn2+ ions. In the working mode in the presence of glucose/O2, the hydrogel is decomposed due to the reduction of Fe3+ to Fe2+, accompanied by rapid release of Zn2+ to specifically activate a Zn2+-responsive DNAzyme nanodevice on the cell surface, leading to the dimerization of homologous or nonhomologous receptors to promote or inhibit cell proliferation and migration. This EBFC-SPB platform provides a powerful "sensing-actuating-treating" tool for chemically regulating cellular behaviors, which holds great promise in precision biomedicine.
Collapse
Affiliation(s)
- Hongyan Geng
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shuangcheng Zhi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xuemin Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, People's Republic of China
- Department of Ultrasonic Medicine, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Yongcun Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Guofang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, People's Republic of China
| | - Senquan Dai
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shuzhen Lv
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
7
|
Almeida-Pinto J, Moura BS, Gaspar VM, Mano JF. Advances in Cell-Rich Inks for Biofabricating Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313776. [PMID: 38639337 DOI: 10.1002/adma.202313776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.
Collapse
Affiliation(s)
- José Almeida-Pinto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Beatriz S Moura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
8
|
Kim S, Li S, Jangid AK, Park HW, Lee DJ, Jung HS, Kim K. Surface Engineering of Natural Killer Cells with CD44-targeting Ligands for Augmented Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306738. [PMID: 38161257 DOI: 10.1002/smll.202306738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Indexed: 01/03/2024]
Abstract
Adoptive immunotherapy utilizing natural killer (NK) cells has demonstrated remarkable efficacy in treating hematologic malignancies. However, its clinical intervention for solid tumors is hindered by the limited expression of tumor-specific antigens. Herein, lipid-PEG conjugated hyaluronic acid (HA) materials (HA-PEG-Lipid) for the simple ex-vivo surface coating of NK cells is developed for 1) lipid-mediated cellular membrane anchoring via hydrophobic interaction and thereby 2) sufficient presentation of the CD44 ligand (i.e., HA) onto NK cells for cancer targeting, without the need for genetic manipulation. Membrane-engineered NK cells can selectively recognize CD44-overexpressing cancer cells through HA-CD44 affinity and subsequently induce in situ activation of NK cells for cancer elimination. Therefore, the surface-engineered NK cells using HA-PEG-Lipid (HANK cells) establish an immune synapse with CD44-overexpressing MIA PaCa-2 pancreatic cancer cells, triggering the "recognition-activation" mechanism, and ultimately eliminating cancer cells. Moreover, in mouse xenograft tumor models, administrated HANK cells demonstrate significant infiltration into solid tumors, resulting in tumor apoptosis/necrosis and effective suppression of tumor progression and metastasis, as compared to NK cells and gemcitabine. Taken together, the HA-PEG-Lipid biomaterials expedite the treatment of solid tumors by facilitating a sequential recognition-activation mechanism of surface-engineered HANK cells, suggesting a promising approach for NK cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Oral Histology, Dankook University College of Dentistry, 119, Dandae-ro, Dongnam-gu, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| |
Collapse
|
9
|
Luo HD, Moon H, Siren E, Clark M, Drayton M, Kizhakkedathu JN. Investigation on Adaptability and Applicability of Polymer-Mediated Cell Surface Engineering by Ligation with Transglutaminase. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15893-15906. [PMID: 38512725 DOI: 10.1021/acsami.3c19202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Polymer-mediated cell surface engineering can be a powerful tool to modify the cell's biological behavior, but a simple ligation strategy must be identified. This manuscript assessed the use of transglutamination as a versatile and adaptable approach for cell surface engineering in various cellular models relevant to biomedical applications. This enzymatic approach was evaluated for its feasibility and potential for conjugating polymers to diverse cell surfaces and its biological effects. Transglutaminase-mediated ligation was successfully performed at temperatures ranging from 4 to 37 °C in as quickly as 30 min, while maintaining biocompatibility and preserving cell viability. This approach was successfully applied to nine different cell surfaces (including adherent cells and suspension cells) by optimizing the enzyme source (guinea pig liver vs microbial), buffer compositions, and incubation conditions. Finally, polymer-mediated cell surface engineering using transglutaminase exhibited immunocamouflage abilities for endothelial cells, T cells, and red blood cells by preventing the recognition of cell surface proteins by antibodies. Employing transglutaminase in polymer-mediated cell surface engineering is a promising approach to maximize its application in cell therapy and other biomedical applications.
Collapse
Affiliation(s)
- Haiming D Luo
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
| | - Haisle Moon
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C V6T 1Z7, Canada
| | - Erika Siren
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
| | - Meredith Clark
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Matthew Drayton
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research & Life Sciences Institute, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, B.C. V6T 1Z1, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C V6T 1Z7, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, B.C. V6T 2B9, Canada
| |
Collapse
|
10
|
Xiao M, Lv S, Zhu C. Bacterial Patterning: A Promising Biofabrication Technique. ACS APPLIED BIO MATERIALS 2024. [PMID: 38408887 DOI: 10.1021/acsabm.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacterial patterning has emerged as a pivotal biofabrication technique in the biomedical field. In the past 2 decades, a diverse array of bacterial patterning approaches have been developed to enable the precise manipulation of the spatial distribution of bacterial patterns for various applications. Despite the significance of these advancements, there is a deficiency of review articles providing an overview of bacterial patterning technologies. In this mini-review, we systematically summarize the progress of bacterial patterning over the past 2 decades. This review commences with an elucidation of the definition and fundamental principles of bacterial patterning. Subsequently, we introduce the established bacterial patterning strategies, accompanied by discussions about the advantages and limitations of each approach. Furthermore, we showcase the biomedical applications of these strategies, highlighting their efficacy in spatial control of biofilms, biosensing, and biointervention. Finally, this mini-review is concluded with a summary and an outlook on future challenges and opportunities. It is anticipated that this mini-review can serve as a concise guide for those who are interested in this exciting and rapidly evolving research area.
Collapse
Affiliation(s)
- Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Lee CE, Kim S, Park HW, Lee W, Jangid AK, Choi Y, Jeong WJ, Kim K. Tailoring tumor-recognizable hyaluronic acid-lipid conjugates to enhance anticancer efficacies of surface-engineered natural killer cells. NANO CONVERGENCE 2023; 10:56. [PMID: 38097911 PMCID: PMC10721593 DOI: 10.1186/s40580-023-00406-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Natural killer (NK) cells have clinical advantages in adoptive cell therapy owing to their inherent anticancer efficacy and their ability to identify and eliminate malignant tumors. However, insufficient cancer-targeting ligands on NK cell surfaces often inhibit their immunotherapeutic performance, especially in immunosuppressive tumor microenvironment. To facilitate tumor recognition and subsequent anticancer function of NK cells, we developed hyaluronic acid (HA, ligands to target CD44 overexpressed onto cancer cells)-poly(ethylene glycol) (PEG, cytoplasmic penetration blocker)-Lipid (molecular anchor for NK cell membrane decoration through hydrophobic interaction) conjugates for biomaterial-mediated ex vivo NK cell surface engineering. Among these major compartments (i.e., Lipid, PEG and HA), optimization of lipid anchors (in terms of chemical structure and intrinsic amphiphilicity) is the most important design parameter to modulate hydrophobic interaction with dynamic NK cell membranes. Here, three different lipid types including 1,2-dimyristoyl-sn-glycero-3-phosphati-dylethanolamine (C14:0), 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE, C18:0), and cholesterol were evaluated to maximize membrane coating efficacy and associated anticancer performance of surface-engineered NK cells (HALipid-NK cells). Our results demonstrated that NK cells coated with HA-PEG-DSPE conjugates exhibited significantly enhanced anticancer efficacies toward MDA-MB-231 breast cancer cells without an off-target effect on human fibroblasts specifically via increased NK cell membrane coating efficacy and prolonged surface duration of HA onto NK cell surfaces, thereby improving HA-CD44 recognition. These results suggest that our HALipid-NK cells with tumor-recognizable HA-PEG-DSPE conjugates could be further utilized in various cancer immunotherapies.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yonghyun Choi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
12
|
Huang F, Liu J, Li M, Liu Y. Nanoconstruction on Living Cell Surfaces with Cucurbit[7]uril-Based Supramolecular Polymer Chemistry: Toward Cell-Based Delivery of Bio-Orthogonal Catalytic Systems. J Am Chem Soc 2023; 145:26983-26992. [PMID: 38032103 DOI: 10.1021/jacs.3c10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Employing living cells as carriers to transport transition metal-based catalysts for target-specific bio-orthogonal catalysis represents a cutting-edge approach in advancing precision biomedical applications. One of the initial hurdles in this endeavor involves effectively attaching the catalysts to the carrier cells while preserving the cells' innate ability to interact with biological systems and maintaining the unaltered catalytic activity. In this study, we have developed an innovative layer-by-layer method that leverages a noncovalent interaction between cucurbit[7]uril and adamantane as the primary driving force for crafting polymeric nanostructures on the surfaces of these carrier cells. The strong binding affinity between the host-guest pair ensures the creation of a durable polymer coating on the cell surfaces. Meanwhile, the layer-by-layer process offers high adaptability, facilitating the efficient loading of bio-orthogonal catalysts onto cell surfaces. Importantly, the polymeric coating shows no discernible impact on the cells' physiological characteristics, including their tropism, migration, and differentiation, while preserving the effectiveness of the bio-orthogonal catalysts.
Collapse
Affiliation(s)
- Fang Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jiaxiong Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Mengru Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yiliu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|