1
|
Pal SK, Otoufat T, Koh D, Bae H, Lee S, Lee H, Kim G. Solar-Adaptive Cooling Blocks Composed of Recycled Fabric. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58730-58738. [PMID: 39405426 DOI: 10.1021/acsami.4c14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Radiative cooling technologies have had a significant impact on advancing carbon neutrality efforts by significantly improving the passive cooling efficiency. The tandem of conduction and radiation enables solar-adaptive radiative cooling through the insulating effect of materials along with solar absorption, which affects the thermal state of materials and enhances radiative thermal transfer from the surface under solar irradiation. This enhancement is achieved by utilizing the porous polymeric structure of materials, which facilitates improved conduction pathways along with solar reflectance, while maintaining the effective emission of thermal radiation. In this particular scenario, blocks, which were made of recycled fibers, offer a great opportunity as solar-adaptive cooling materials, enabling their easy deployment for cooling applications. Herein, we have fabricated a porous block using fiber wastes that combines strong solar reflectance (92%) at the 1 μm region and high thermal infrared emittance (∼75%) at the 10 μm region. The combination of effective solar reflection and thermal infrared emission allows the fiber block to achieve a high cooling performance of approximately 68 W/m2 under solar irradiation. In addition, the fiber block works effectively for insulation during the night, thereby enhancing its heat retention capabilities. The economic and environmental advantages of the fiber block make it a cost-competitive and sustainable choice for near-market cooling technologies. This design is anticipated to expand the practical application range of passive cooling.
Collapse
Affiliation(s)
- Sudip Kumar Pal
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Tohid Otoufat
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Dongwan Koh
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Hoyeon Bae
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Sungkwon Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Hoik Lee
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan-si 15588, Republic of Korea
| | - Gunwoo Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
2
|
Tang B, Song F, Wu JM, Tan QW, Zhao YY, Zhou J, Chen X, Wang XL, Wang YZ. A Mussel-Inspired and Recyclable Coating with Integrated Daytime Radiative Cooling and Triboelectric Energy Harvesting for Intelligent and Sustainable Buildings. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39367820 DOI: 10.1021/acsami.4c12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Carbon neutrality necessitates new technologies for renewable energy utilization, active regulation of heat exchange, and material recycling to promote green and intelligent building development. Currently, the integration of these functions and characteristics into a single coating material presents a significant challenge. Here, we demonstrate a novel triboelectric and radiative cooling coating with mussel-inspired architectures, fabricated using cellulose nanofibers and Mica-TiO2 as a functional mortar and brick, respectively. The abundant polar groups and specific surface area of cellulose nanofibers enable a high accumulation of induced electrostatic charges, allowing the coating to act as a tribolayer to generate triboelectric outputs. The regularly layered arrangement of Mica-TiO2 endows fire resistance to the coating, which exhibits self-extinguishing properties and maintains 45% of its original electrical output even after direct exposure to flame for 20 s. Additionally, the created multilayered stacking morphology, as well as intense group vibrations of Mica-TiO2, facilitates high reflectivity (Rsolar = 0.9) and long-wave infrared emissivity (ϵLWIR = 0.94), achieving a daytime subambient temperature drop of 5.3 °C. Notably, the coating can be recycled easily while maintaining its triboelectric, radiative cooling, and fire-resistant properties. This work provides an innovative strategy for unifying triboelectric and radiative cooling functions, as well as recyclability, into a single coating material, offering new insights for future sustainable and energy-efficient buildings.
Collapse
Affiliation(s)
- Bo Tang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jia-Min Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiang-Wu Tan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Yao Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jie Zhou
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xi Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Li Z, Long L, Tang Z, Chen X, Huang Z, Ren Y, Liu Y, Ye H. Stretchable Metamaterials with Tunable Infrared Emissivity for Dynamic Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47639-47645. [PMID: 39223078 DOI: 10.1021/acsami.4c09758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Manipulation of infrared emissivity, which is closely related to surface structure and optical parameters of materials, is a crucial approach for realizing dynamic thermal management. In this study, we design a metamaterial consisting of an array of aluminum disks embedded on a surface of a stretchable elastomeric substrate. Mechanical stretching-induced deformation allows dynamic modification of the surface structure and equivalent optical parameters, thus enabling dynamic control of the emissivity. By utilizing the elastomer polydimethylsiloxane (PDMS) as the substrate, the microstructure interdisk gap can be altered by stretching the PDMS. Through theoretical calculations, the plausibility of this approach is explained by the excitation of plasmon resonance and the variation in the exposed area of highly absorbent PDMS, and the optimal structures for tuning the infrared emissivity are revealed to be 6 μm in diameter and 100 nm in height. Based on this design, we prepare samples with periods of 7 and 7.9 μm and experimentally demonstrate that a change in the period can cause a change in the emissivity and thus tunability in thermal control performance. The temperature difference between the two samples reaches 44.1 °C at a heating power of 0.28 W/cm2 for both samples. Furthermore, we construct a stretching platform that enables in situ mechanical stretching to realize dynamic changes in emissivity. The integral infrared emissivity of the sample increases from 0.32 to 0.5 at a biaxial tensile strain of 13%, achieving a 56% modulation rate of the integral infrared emissivity. The material is expected to enable dynamic thermal management.
Collapse
Affiliation(s)
- Zhaoran Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Linshuang Long
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Zhipeng Tang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiaopeng Chen
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Zizhen Huang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yuan Ren
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yuchi Liu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong Ye
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
4
|
Lee G, Kang H, Yun J, Chae D, Jeong M, Jeong M, Lee D, Kim M, Lee H, Rho J. Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces. Nat Commun 2024; 15:6537. [PMID: 39095384 PMCID: PMC11297326 DOI: 10.1038/s41467-024-50872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Sustainable energies from weather are the most ubiquitous and non-depleted resources. However, existing devices exploiting weather-dependent energies are sensitive to weather conditions and geographical locations, making their universal applicability challenging. Herein, we propose an all-weather sustainable glass surface integrating a triboelectric nanogenerator and radiative cooler, which serves as a sustainable device, harvesting energy from raindrops and saving energy on sunny days. By systematically designing transparent, high-performance triboelectric layers, functioning as thermal emitters simultaneously, particularly compatible with radiative cooling components optimized with an evolutionary algorithm, our proposed device achieves optimal performance for all-weather-dependent energies. We generate 248.28 Wm-2 from a single droplet with an energy conversion ratio of 2.5%. Moreover, the inner temperature is cooled down by a maximum of 24.1 °C compared to pristine glass. Notably, as the proposed device is realized to provide high transparency up to 80% in the visible range, we are confident that our proposed device can be applied to versatile applications.
Collapse
Affiliation(s)
- Geon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jooyeong Yun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Dongwoo Chae
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Minseo Jeong
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Miso Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- SKKU Institute of Energy Science and Engineering (SIEST), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea.
- National Institute of Nanomaterials Technology (NINT), Pohang, Republic of Korea.
| |
Collapse
|
5
|
Yoon J, Kim KS, Hong WK. Thermochromic Vanadium Dioxide Nanostructures for Smart Windows and Radiative Cooling. Chemistry 2024; 30:e202400826. [PMID: 38818667 DOI: 10.1002/chem.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The pursuit of energy-saving materials and technologies has garnered significant attention for their pivotal role in mitigating both energy consumption and carbon emissions. In particular, thermochromic windows in buildings offer energy-saving potential by adjusting the transmittance of solar irradiation in response to temperature changes. Radiative cooling (RC), radiating thermal heat from an object surface to the cold outer space, also offers a potential way for cooling without energy consumption. Accordingly, smart window and RC technologies based on thermochromic materials can play a crucial role in improving energy efficiency and reducing energy consumption in buildings in response to the surrounding temperature. Vanadium dioxide (VO2) is a promising thermochromic material for energy-saving smart windows and RC due to its reversible metal-to-insulator transition, accompanying large changes in its optical properties. This review provides a brief summary of synthesis methods of VO2 nanostructures based on nanoparticles and thin films. Moreover, this review emphasizes and summarizes modulation strategies focusing on doping, thermal processing, and structure manipulation to improve and regulate the thermochromic and emissivity performance of VO2 for smart window and RC applications. In last, the challenges and recent advances of VO2-based smart window and RC applications are briefly presented.
Collapse
Affiliation(s)
- Jongwon Yoon
- Energy & Environment Materials Research Division, Korea Institute of Materials Science, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Kwang-Seok Kim
- Carbon & Light Materials Application Group, Korea Institute of Industrial Technology, 222Palbok-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Woong-Ki Hong
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| |
Collapse
|
6
|
Zhao X, Li J, Dong K, Wu J. Switchable and Tunable Radiative Cooling: Mechanisms, Applications, and Perspectives. ACS NANO 2024; 18:18118-18128. [PMID: 38951984 DOI: 10.1021/acsnano.4c05929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The cost of annual energy consumption in buildings in the United States exceeds 430 billion dollars ( Science 2019, 364 (6442), 760-763), of which about 48% is used for space thermal management (https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019), revealing the urgent need for efficient thermal management of buildings and dwellings. Radiative cooling technologies, combined with the booming photonic and microfabrication technologies ( Nature 2014, 515 (7528), 540-544), enable energy-free cooling by radiative heat transfer to outer space through the atmospheric transparent window ( Nat. Commun. 2024, 15 (1), 815). To pursue all-season energy savings in climates with large temperature variations, switchable and tunable radiative coolers (STRC) have emerged in recent years and quickly gained broad attention. This Perspective introduces the existing STRC technologies and analyzes their benefits and challenges in future large-scale applications, suggesting ways for the development of future STRCs.
Collapse
Affiliation(s)
- Xuzhe Zhao
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
- Center of Double Helix, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Jiachen Li
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kaichen Dong
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
- Center of Double Helix, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Chen Q, Huang X, Lu Y, Xu H, Zhao D. Mechanically Tunable Transmittance Convection Shield for Dynamic Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21807-21817. [PMID: 38634635 DOI: 10.1021/acsami.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Radiative cooling is the process to dissipate heat to the outer space through an atmospheric window (8-13 μm), which has great potential for energy savings in buildings. However, the traditional "static" spectral characteristics of radiative cooling materials may result in overcooling during the cold season or at night, necessitating the development of dynamic spectral radiative cooling for enhanced energy saving potential. In this study, we showcase the realization of dynamic radiative cooling by modulating the heat transfer process using a tunable transmittance convection shield (TTCS). The transmittance of the TTCS in both solar spectrum and atmospheric window can be dynamically adjusted within ranges of 28.8-72.9 and 27.0-80.5%, with modulation capabilities of ΔTsolar = 44.1% and ΔT8-13 μm = 53.5%, respectively. Field measurements demonstrate that through the modulation, the steady-state temperature of the TTCS architecture is 0.3 °C lower than that of a traditional radiative cooling architecture during the daytime and 3.3 °C higher at nighttime, indicating that the modulation strategy can effectively address the overcooling issue, offering an efficient way of energy saving through dynamic radiative cooling.
Collapse
Affiliation(s)
- Qixiang Chen
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Huang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Yuehui Lu
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hua Xu
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dongliang Zhao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
- Institute of Science and Technology for Carbon Neutrality, Southeast University, Nanjing, Jiangsu 210096, China
- Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Nanjing, Jiangsu 210096, China
| |
Collapse
|
8
|
He J, Zhang Q, Zhou Y, Chen Y, Ge H, Tang S. Bioinspired Polymer Films with Surface Ordered Pyramid Arrays and 3D Hierarchical Pores for Enhanced Passive Radiative Cooling. ACS NANO 2024; 18:11120-11129. [PMID: 38626337 DOI: 10.1021/acsnano.3c12244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Passive radiative cooling (PRC) has been acknowledged to be an environmentally friendly cooling technique, and especially artificial photonic materials with manipulating light-matter interaction ability are more favorable for PRC. However, scalable production of radiative cooling materials with advanced biologically inspired structures, fascinating properties, and high throughput is still challenging. Herein, we reported a bioinspired design combining surface ordered pyramid arrays and internal three-dimensional hierarchical pores for highly efficient PRC based on mimicking natural photonic structures of the white beetle Cyphochilus' wings. The biological photonic film consisting of surface ordered pyramid arrays with a bottom side length of 4 μm together with amounts of internal nano- and micropores was fabricated by using scalable phase separation and a quick hot-pressing process. Optimization of pore structures and surface-enhanced photonic arrays enables the bioinspired film to possess an average solar reflectance of ∼98% and a high infrared emissivity of ∼96%. A temperature drop of ∼8.8 °C below the ambient temperature is recorded in the daytime. Besides the notable PRC capability, the bioinspired film exhibits excellent flexibility, strong mechanical strength, and hydrophobicity; therefore, it can be applied in many complex outdoor scenarios. This work provides a highly efficient and mold replication-like route to develop highly efficient passive cooling devices.
Collapse
Affiliation(s)
- Jiajun He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Qingyuan Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yaya Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yu Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shaochun Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
9
|
Liu R, Wang S, Zhou Z, Zhang K, Wang G, Chen C, Long Y. Materials in Radiative Cooling Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401577. [PMID: 38497602 DOI: 10.1002/adma.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Radiative cooling (RC) is a carbon-neutral cooling technology that utilizes thermal radiation to dissipate heat from the Earth's surface to the cold outer space. Research in the field of RC has garnered increasing interest from both academia and industry due to its potential to drive sustainable economic and environmental benefits to human society by reducing energy consumption and greenhouse gas emissions from conventional cooling systems. Materials innovation is the key to fully exploit the potential of RC. This review aims to elucidate the materials development with a focus on the design strategy including their intrinsic properties, structural formations, and performance improvement. The main types of RC materials, i.e., static-homogeneous, static-composite, dynamic, and multifunctional materials, are systematically overviewed. Future trends, possible challenges, and potential solutions are presented with perspectives in the concluding part, aiming to provide a roadmap for the future development of advanced RC materials.
Collapse
Affiliation(s)
- Rong Liu
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Shancheng Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Zhengui Zhou
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Keyi Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Guanya Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Changyuan Chen
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Yi Long
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
10
|
Han D, Wang C, Han CB, Cui Y, Ren WR, Zhao WK, Jiang Q, Yan H. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO 2 Aerogel Coating for Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9303-9312. [PMID: 38343044 DOI: 10.1021/acsami.3c18101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Daytime radiative cooling technology offers a low-carbon, environmentally friendly, and nonpower-consuming approach to realize building energy conservation. It is important to design materials with high solar reflectivity and high infrared emissivity in atmospheric windows. Herein, a porous calcium silicate composite SiO2 aerogel water-borne coating with strong passive radiative cooling and high thermal insulation properties is proposed, which shows an exceptional solar reflectance of 94%, high sky window emissivity of 96%, and 0.0854 W/m·K thermal conductivity. On the SiO2/CaSiO3 radiative cooling coating (SiO2-CS-coating), a strategy is proposed to enhance the atmospheric window emissivity by lattice resonance, which is attributed to the eight-membered ring structure of porous calcium silicate, thereby increasing the atmospheric window emissivity. In the daytime test (solar irradiance 900W/m2, ambient temperature 43 °C, wind speed 0.53 m/s, humidity 25%), the temperature inside the box can achieve a cooling temperature of 13 °C lower than that of the environment, which is 30 °C, and the theoretical cooling power is 96 W/m2. Compared with the commercial white coating, SiO2-CS-coating can save 70 kW·h of electric energy in 1 month, and the energy consumption is reduced by 36%. The work provides a scalable, widely applicable radiative-cooling coating for building comfort, which can greatly reduce indoor temperatures and is suitable for building surfaces.
Collapse
Affiliation(s)
- Dong Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chenghai Wang
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
- Langgu (Tianjin) New Material Technology Co., Ltd., Tianjin 300392, People's Republic of China
| | - Chang Bao Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yanan Cui
- Langgu (Tianjin) New Material Technology Co., Ltd., Tianjin 300392, People's Republic of China
| | - Wen Rui Ren
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Wen Kang Zhao
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Quan Jiang
- China Testing & Certification International Group Co., Ltd., Beijing 100000, People's Republic of China
- China Buiding Material Federation Metal Composite Materials & Products Branch, Beijing 100024, People's Republic of China
| | - Hui Yan
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
11
|
Yu L, Huang Y, Zhao Y, Rao Z, Li W, Chen Z, Chen M. Self-sustained and Insulated Radiative/Evaporative Cooler for Daytime Subambient Passive Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6513-6522. [PMID: 38273444 DOI: 10.1021/acsami.3c19223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Passive cooling technologies are one of the promising solutions to the global energy crisis due to no consumption of fossil fuels during operation. However, the existing radiative and evaporative coolers still have problems achieving daytime subambient cooling while maintaining evaporation over the long term. Here, we propose a self-sustained and insulated radiative/evaporative cooler (SIREC), which consists of a porous polyethylene film (P-PE) at the top, an air layer in the middle, and poly(vinyl alcohol) hydrogel with lithium bromide (PLH) at the bottom. In particular, the P-PE shows high solar reflectance (R̅solar = 0.91) and long-wave infrared transmittance (τ̅LWIR = 0.92), which reflects sunlight while enhancing the direct radiative heat transfer between outer space and PLH (ε̅LWIR = 0.96) for sky radiative cooling. In addition, the desirable vapor permeability (579 s m-1) of the P-PE also results in good compatibility with PLH for evaporative cooling (EC). Moreover, the PLH's ability to harvest atmospheric water at night provides self-sustainment for daytime EC. The air layer between P-PE and PLH further enhances the subambient cooling performance of the SIREC. These findings indicate promising prospects for the integration of passive cooling technologies.
Collapse
Affiliation(s)
- Li Yu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yimou Huang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Yanwei Zhao
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenghua Rao
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Weihong Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhuo Chen
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Meijie Chen
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|