1
|
Zhu Y, Wang Y, Pang X, Jiang Y, Liu X, Li Q, Wang Z, Liu C, Hu W, Zhou P. Non-volatile 2D MoS 2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region. Nat Commun 2024; 15:6015. [PMID: 39019876 PMCID: PMC11255212 DOI: 10.1038/s41467-024-50353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Cutting-edge mid-wavelength infrared (MWIR) sensing technologies leverage infrared photodetectors, memory units, and computing units to enhance machine vision. Real-time processing and decision-making challenges emerge with the increasing number of intelligent pixels. However, current operations are limited to in-sensor computing capabilities for near-infrared technology, and high-performance MWIR detectors for multi-state switching functions are lacking. Here, we demonstrate a non-volatile MoS2/black phosphorus (BP) heterojunction MWIR photovoltaic detector featuring a semi-floating gate structure design, integrating near- to mid-infrared photodetection, memory and computing (PMC) functionalities. The PMC device exhibits the property of being able to store a stable responsivity, which varies linearly with the stored conductance state. Significantly, device weights (stable responsivity) can be programmed with power consumption as low as 1.8 fJ, and the blackbody peak responsivity can reach 1.68 A/W for the MWIR band. In the simulation of Faster Region with convolution neural network (CNN) based on the FLIR dataset, the PMC hardware responsivity weights can reach 89% mean Average Precision index of the feature extraction network software weights. This MWIR photovoltaic detector, with its versatile functionalities, holds significant promise for applications in advanced infrared object detection and recognition systems.
Collapse
Affiliation(s)
- Yuyan Zhu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yang Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
- Shaoxin Laboratory, Shaoxing, 312000, China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
| | - Xingchen Pang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yongbo Jiang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoxian Liu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Qing Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Chunsen Liu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Integrated Chip and System, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Shaoxin Laboratory, Shaoxing, 312000, China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Integrated Chip and System, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Hai Y, Gahlot K, Tanchev M, Mutalik S, Tekelenburg EK, Hong J, Ahmadi M, Piveteau L, Loi MA, Protesescu L. Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dots. J Am Chem Soc 2024; 146:12808-12818. [PMID: 38668701 PMCID: PMC11082887 DOI: 10.1021/jacs.4c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
The surface chemistry of colloidal semiconductor nanocrystals (QDs) profoundly influences their physical and chemical attributes. The insulating organic shell ensuring colloidal stability impedes charge transfer, thus limiting optoelectronic applications. Exchanging these ligands with shorter inorganic ones enhances charge mobility and stability, which is pivotal for using these materials as active layers for LEDs, photodetectors, and transistors. Among those, InP QDs also serve as a model for surface chemistry investigations. This study focuses on group III metal salts as inorganic ligands for InP QDs. We explored the ligand exchange mechanism when metal halide, nitrate, and perchlorate salts of group III (Al, In Ga), common Lewis acids, are used as ligands for the conductive inks. Moreover, we compared the exchange mechanism for two starting model systems: InP QDs capped with myristate and oleylamine as X- and L-type native organic ligands, respectively. We found that all metal halide, nitrate, and perchlorate salts dissolved in polar solvents (such as n-methylformamide, dimethylformamide, dimethyl sulfoxide, H2O) with various polarity formed metal-solvent complex cations [M(Solvent)6]3+ (e.g., [Al(MFA)6]3+, [Ga(MFA)6]3+, [In(MFA)6]3+), which passivated the surface of InP QDs after the removal of the initial organic ligand. All metal halide capped InP/[M(Solvent)6]3+ QDs show excellent colloidal stability in polar solvents with high dielectric constant even after 6 months in concentrations up to 74 mg/mL. Our findings demonstrate the dominance of dissociation-complexation mechanisms in polar solvents, ensuring colloidal stability. This comprehensive understanding of InP QD surface chemistry paves the way for exploring more complex QD systems such as InAs and InSb QDs.
Collapse
Affiliation(s)
- Yun Hai
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Kushagra Gahlot
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Mark Tanchev
- Institute
of Chemistry and Chemical Engineering, École
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Suhas Mutalik
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Eelco K. Tekelenburg
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Jennifer Hong
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Majid Ahmadi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Laura Piveteau
- Institute
of Chemistry and Chemical Engineering, École
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maria Antonietta Loi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Loredana Protesescu
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| |
Collapse
|
3
|
Zhang Y, Xia P, Rehl B, Parmar DH, Choi D, Imran M, Chen Y, Liu Y, Vafaie M, Li C, Atan O, Pina JM, Paritmongkol W, Levina L, Voznyy O, Hoogland S, Sargent EH. Dicarboxylic Acid-Assisted Surface Oxide Removal and Passivation of Indium Antimonide Colloidal Quantum Dots for Short-Wave Infrared Photodetectors. Angew Chem Int Ed Engl 2024; 63:e202316733. [PMID: 38170453 DOI: 10.1002/anie.202316733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.
Collapse
Affiliation(s)
- Yangning Zhang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Pan Xia
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Benjamin Rehl
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Darshan H Parmar
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Dongsun Choi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Muhammad Imran
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Yiqing Chen
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Yanjiang Liu
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Maral Vafaie
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Chongwen Li
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Ozan Atan
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Joao M Pina
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Watcharaphol Paritmongkol
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand
| | - Larissa Levina
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Oleksandr Voznyy
- Department of Physical and Environmental Sciences, University of Toronto (Scarborough), 1065 Military Trail, M1C 1A4, Toronto, Ontario, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario, Canada
| |
Collapse
|