1
|
Dai X, Zheng Y, Cui J, Zeng Y, Yang B, Zhang Z. Nanodrug delivery systems targeting ferroptosis as an innovative therapeutic approach for Rheumatoid Arthritis. Mater Today Bio 2025; 32:101804. [PMID: 40343168 PMCID: PMC12059336 DOI: 10.1016/j.mtbio.2025.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation, progressive cartilage degradation, and bone erosion. Recent research has implicated ferroptosis not only in autoimmune hepatitis but also in the pathogenesis and progression of autoimmune disorders like RA. Consequently, numerous therapeutic strategies have begun to target the ferroptosis pathway, particularly in the design and development of nanodrug delivery systems (NDDSs). While previous reviews have comprehensively discussed the mechanisms of ferroptosis, related signaling pathways, and NDDS materials, recent studies have further elucidated the interplay between ferroptosis and various metabolic pathways, providing a robust theoretical basis for the design of NDDS-based ferroptosis strategies. This review focuses on investigating the role of ferroptosis in the development of RA, aiming to elucidate how targeting ferroptosis can offer novel therapeutic concepts and potential treatments for RA patients. Specifically, it summarizes the design strategies of ferroptosis-based NDDSs via different pathways and highlights the feasibility of RA treatment regimens based on the ferroptosis mechanism. Furthermore, the review critically discusses the current limitations of NDDSs and offers perspectives on future research directions in this field.
Collapse
Affiliation(s)
- Xiaolin Dai
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Yu Zheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, PR China
- Sichuan-Chongqing Joint Key Laboratory of Metabolic Vascular Diseases, Luzhou, 646000, PR China
| | - Jianrong Cui
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Yuqi Zeng
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Bo Yang
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Zhanlin Zhang
- Irradiation Preservation and Effect Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, PR China
| |
Collapse
|
2
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
3
|
Chen Y, Gao B, Cai W, Lai J, Lai K, Wang Y. Oral mucosa: anti-inflammatory function, mechanisms, and applications. J Mater Chem B 2025; 13:4059-4072. [PMID: 40062381 DOI: 10.1039/d4tb02845g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Large soft tissue injuries require several weeks to heal and frequently leave fibrotic scars that can negatively impact tissue function. However, the applicability of traditional skin and mucous membrane transplantation for the treatment of lesions in the ocular surface and urethra is limited owing to the unique locations and functions of these tissues. Oral mucosa has been widely used in the repair of such injuries owing to its reduced propensity for inducing an inflammatory response, angiogenesis, and scarring. Enhancing chronic wound healing while avoiding scar formation requires a broader understanding of the cellular and molecular pathways that drive wound repair in the oral mucosa. This review integrates current knowledge on the mechanisms underlying the resistance of the oral mucosa to inflammation and its application as a graft material, highlighting its challenges and potential advancements. The aim of this review is to offer insights into future therapeutic strategies for wound healing and related conditions.
Collapse
Affiliation(s)
- Yani Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Bicong Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Junhong Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| |
Collapse
|
4
|
Zheng T, Lu F, Wu P, Chen Y, Zhang R, Li X. Ferroptosis and cuproptosis in periodontitis: recent biological insights and therapeutic advances. Front Immunol 2025; 16:1526961. [PMID: 40066457 PMCID: PMC11891063 DOI: 10.3389/fimmu.2025.1526961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis. Further, we propose that a homeostatic imbalance of copper and iron, driven by periodontal pathogens, may contribute to elevated periodontal oxidative stress, representing a potential unifying link between ferroptosis and cuproptosis involved in periodontitis. This article presents a comprehensive overview of the molecular mechanisms underlying ferroptosis and cuproptosis in periodontitis, offering novel theoretical insights into its pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Tengyi Zheng
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peihang Wu
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yangan Chen
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China
| |
Collapse
|
5
|
Qin Q, Yang H, Guo R, Zheng Y, Huang Y, Jin L, Fan Z, Li W. FAM96B negatively regulates FOSL1 to modulate the osteogenic differentiation and regeneration of periodontal ligament stem cells via ferroptosis. Stem Cell Res Ther 2024; 15:471. [PMID: 39696611 DOI: 10.1186/s13287-024-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Periodontal ligament stem cell (PDLSC)-based therapy is one of the methods to assist bone regeneration. Understanding the functional regulation of PDLSCs and the mechanisms involved is a crucial issue in bone regeneration. This study aimed to explore the roles of the family with sequence similarity 96 member B (FAM96B) in the functional regulation of PDLSCs. METHODS To assess the osteogenic differentiation of PDLSCs, the alkaline phosphatase (ALP) activity assay, Alizarin red staining, quantitative calcium analysis, and osteogenic marker detection were conducted. Transplantation PDLSCs under the dorsum of nude mice and into the rat calvarial defects were also performed. Then, FAM96B-overexpressed PDLSCs were used for RNA-sequencing and bioinformatic analysis. To evaluate the ferroptosis of PDLSCs, cytosolic reactive oxygen species (ROS), expression of glutathione peroxidase 4 (GPX4), mitochondrial morphology and functions including the mitochondrial ROS, mitochondria membrane potential, and mitochondrial respiration were detected. RESULTS The osteogenic indicators ALP activity, level of mineralization, and osteocalcin expression were decreased in PDLSCs by FAM96B, which demonstrated that FAM96B inhibited the osteogenic differentiation of PDLSCs. FAM96B knockdown promoted the new bone formation of PDLSCs subcutaneously transplanted to the dorsum of nude mice. Then, related biological functions were detected by the RNA-sequencing and the ferroptosis was focused. FAM96B enhanced the cytosolic ROS level and inhibited the expression of GPX4 and mitochondrial functions in PDLSCs. Hence, FAM96B promoted the ferroptosis of PDLSCs. Meanwhile, we found that FAM96B inhibition upregulated the target gene FOS like 1, AP-1 transcription factor subunit (FOSL1) expression and FOSL1 promoted the osteogenic differentiation of PDLSCs in vitro. FOSL1 also promoted the new bone formation of PDLSCs transplanted subcutaneously to the dorsum of nude mice and transplanted into rat calvarial defects. Then, the inhibitory effect of FOSL1 on the ferroptosis was confirmed. CONCLUSIONS FAM96B depletion promoted the osteogenic differentiation and suppressed the ferroptosis of PDLSCs. FAM96B negatively regulated the downstream gene FOSL1 and FOSL1 promoted the osteogenic differentiation of PDLSCs via the ferroptosis. Hence, our findings provided a foundation for understanding the FAM96B-FOSL1 axis acting as a target for MSC mediated bone regeneration.
Collapse
Affiliation(s)
- Qianyi Qin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Haoqing Yang
- Laboratory of Molecular Signalling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Laboratory of Molecular Signalling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|