1
|
Liu Y, Chen L, Li W, Pu J, Wang Z, He B, Yuan S, Xin J, Huang L, Luo Z, Xu J, Zhou X, Zhang H, Zhang Q, Wei L. Scalable Production of Functional Fibers with Nanoscale Features for Smart Textiles. ACS NANO 2024; 18:29394-29420. [PMID: 39428715 DOI: 10.1021/acsnano.4c10111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Functional fibers, retaining nanoscale characteristics or nanomaterial properties, represent a significant advance in nanotechnology. Notably, the combination of scalable manufacturing with cutting-edge nanotechnology further expands their utility across numerous disciplines. Manufacturing kilometer-scale functional fibers with nanoscale properties are critical to the evolution of smart textiles, wearable electronics, and beyond. This review discusses their design principles, manufacturing technologies, and key advancements in the mass production of such fibers. In addition, it summarizes the current applications and state of progress in scalable fiber technologies and provides guidance for future advances in multifunctional smart textiles, by highlighting the upcoming impending demands for evolving nanotechnology. Challenges and directions requiring sustained effort are also discussed, including material selection, device design, large-scale manufacturing, and multifunctional integration. With advances in functional fibers and nanotechnology in large-scale production, wearable electronics, and smart textiles could potentially enhance human-machine interaction and healthcare applications.
Collapse
Affiliation(s)
- Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Long Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Wulong Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jie Pu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Shixing Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiwu Xin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Lei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Ziwang Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiaming Xu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
2
|
Xu S, Shen C, Peng Z, Wu J, Chen Z, Zhang X, Ji N, Jian M, Wu M, Gao X, Zhang J. Direct Growth of Vertical Graphene on Fiber Electrodes and Its Application in Alternating Current Line-Filtering Capacitors. ACS NANO 2024; 18:24154-24161. [PMID: 39163167 DOI: 10.1021/acsnano.4c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Fiber-shaped electrochemical capacitors (FSECs) have garnered substantial attention to emerging portable, flexible, and wearable electronic devices. However, achieving high electronic and ionic conductivity in fiber electrodes while maintaining a large specific surface area is still a challenge for enhancing the capacitance and rapid response of FSECs. Here, we present an electric-field-assisted cold-wall plasma-enhanced chemical vapor (EFCW-PECVD) method for direct growth of vertical graphene (VG) on fiber electrodes, which is incorporated in the FSECs. The customized reactor mainly consists of two radio frequency coils: one for plasma generation and the other for substrate heating. Precise temperature control can be achieved by adjusting the conductive plates and the applied power. With induction heating, only the substrate is heated to above 500 °C within just 5 min, maintaining a low temperature in the gas phase for the growth of VG with a high quality. Using this method, VG was easily grown on metallic fibers. The VG-coated titanium fibers for FSECs exhibit an ultrahigh rate performance and quick ion transport, enabling the conversion of an alternating current signal to a direct current signal and demonstrating outstanding filtering capabilities.
Collapse
Affiliation(s)
- Shichen Xu
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Chao Shen
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Zhisheng Peng
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiandong Wu
- College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhuo Chen
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Xinyu Zhang
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Nannan Ji
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Mingmao Wu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xin Gao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Jin Zhang
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| |
Collapse
|
3
|
Tang C, Zhang K, Yu S, Guan H, Cao M, Zhang K, Pan Y, Zhang S, Sun X, Peng H. All-Metal Flexible Fiber by Continuously Assembling Nanowires for High Electrical Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405000. [PMID: 39152934 DOI: 10.1002/smll.202405000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 08/19/2024]
Abstract
Fiber electronics booms as a new important field but is currently limited by the challenge of finding both highly flexible and conductive fiber electrodes. Here, all-metal fibers based on nanowires are discovered. Silver nanowires are continuously assembled into robust fibers by salt-induced aggregation and then firmly stabilized by plasmonic welding. The nanowire network structures provide them both high flexibility with moduli at the level of MPa and conductivities up to 106 S m-1. They also show excellent electrochemical properties such as low impedance and high electrochemically active surface area. Their stable chronic single-neuron recording is further demonstrated with good biocompatibility in vivo. These new fiber materials may provide more opportunities for the future development of fiber electronics.
Collapse
Affiliation(s)
- Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kailin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Sihui Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Hang Guan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Mingjie Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - You Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Songlin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Li Y, Wang Y, Liu Y, Yan F, Zhu Z, Chen X, Qiu J, Zhang H, Cao G. Polymer Engineering Enables High Linear Capacity Fiber Electrodes by Microenvironment Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309461. [PMID: 38671588 PMCID: PMC11267365 DOI: 10.1002/advs.202309461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/28/2024]
Abstract
Unlike bulky and rigid traditional power systems, 1D fiber batteries possess appealing features such as flexibility and adaptability, which are promising for use in wearable electronic devices. However, the performance and energy density fiber batteries are limited by the contradiction between ionic transfer and robust structure of fiber electrodes. Herein, these problems are addressed via polymer engineering to regulate the microenvironment in electrodes, realizing high-linear-capacity thick fiber electrodes with excellent cycling performance. The porosity of the electrodes is regulated using polymer crosslink networks designed with various components, and lithium-ion transfer is optimized through ether-abundant polymer chains. Furthermore, reinforced covalent bonding with carbon nanotube networks is established based on the modified functional groups of polymer networks. The multiscale optimizations of the porous structure, ionic transportation, and covalent bonding network enhance the lithium-ion dynamics property and structural stability. Therefore, ultrahigh linear-capacity fiber electrodes (17.8 mAh m-1) can be fabricated on a large scale and exhibit excellent stability (92.8% after 800 cycles), demonstrating obvious superiority among the reported fiber electrodes. Moreover, this study highlights the high effectiveness of polymer regulation in fiber electrodes and offers new avenues for designing next-generation wearable energy-storage systems.
Collapse
Affiliation(s)
- Yuan Li
- Research Institute of Chemical DefenseBeijing100191China
| | - Yibo Wang
- Research Institute of Chemical DefenseBeijing100191China
| | - Yan Liu
- Research Institute of Chemical DefenseBeijing100191China
| | - Fang Yan
- School of Chemistry and Biological EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| | - Zhenwei Zhu
- Research Institute of Chemical DefenseBeijing100191China
| | - Xibang Chen
- Research Institute of Chemical DefenseBeijing100191China
| | - Jingyi Qiu
- Research Institute of Chemical DefenseBeijing100191China
| | - Hao Zhang
- Research Institute of Chemical DefenseBeijing100191China
| | - Gaoping Cao
- Research Institute of Chemical DefenseBeijing100191China
| |
Collapse
|
5
|
Tong R, Ma Z, Gu P, Yao R, Li T, Zeng M, Guo F, Liu L, Xu J. Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors. Int J Biol Macromol 2023; 246:125683. [PMID: 37419262 DOI: 10.1016/j.ijbiomac.2023.125683] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Ionic conductive hydrogel fibers based on natural polymers provide an immense focus for a new generation of electronics due to their flexibility and knittability. The feasibility of utilizing pure natural polymer-based hydrogel fibers could be drastically improved if their mechanical and transparent performances satisfy the requirements of actual practice. Herein, we report a facile fabrication strategy for significantly stretchable and sensitive sodium alginate ionic hydrogel fibers (SAIFs), by glycerol initiating physical crosslinking and by CaCl2 inducing ionic crosslinking. The obtained ionic hydrogel fibers not only show significant stretchability (tensile strength of 1.55 MPa and fracture strain of ∼161 %), but also exhibit wide-range sensing, satisfactorily stable, rapidly responsive, and multiply sensitive abilities to external stimulus. In addition, the ionic hydrogel fibers have excellent transparency (over 90 % in a wide wavelength range), and good anti-evaporation and anti-freezing properties. Furthermore, the SAIFs have been easily knitted into a textile, and successfully applied as wearable sensors to recognize human motions, by observing the output electrical signals. Our methodology for fabrication intelligent SAIFs will shed light on artificial flexible electronics and other textile-based strain sensors.
Collapse
Affiliation(s)
- Ruiping Tong
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Zhihui Ma
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Ping Gu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Rui Yao
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Tengfei Li
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| | - Mingshun Zeng
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Fazhan Guo
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Linfeng Liu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Junfei Xu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| |
Collapse
|
6
|
Nuroldayeva G, Balanay MP. Flexing the Spectrum: Advancements and Prospects of Flexible Electrochromic Materials. Polymers (Basel) 2023; 15:2924. [PMID: 37447568 DOI: 10.3390/polym15132924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The application potential of flexible electrochromic materials for wearable devices, smart textiles, flexible displays, electronic paper, and implantable biomedical devices is enormous. These materials offer the advantages of conformability and mechanical robustness, making them highly desirable for these applications. In this review, we comprehensively examine the field of flexible electrochromic materials, covering topics such as synthesis methods, structure design, electrochromic mechanisms, and current applications. We also address the challenges associated with achieving flexibility in electrochromic materials and discuss strategies to overcome them. By shedding light on these challenges and proposing solutions, we aim to advance the development of flexible electrochromic materials. We also highlight recent advances in the field and present promising directions for future research. We intend to stimulate further innovation and development in this rapidly evolving field and encourage researchers to explore new opportunities and applications for flexible electrochromic materials. Through this review, readers can gain a comprehensive understanding of the synthesis, design, mechanisms, and applications of flexible electrochromic materials. It serves as a valuable resource for researchers and industry professionals looking to harness the potential of these materials for various technological applications.
Collapse
Affiliation(s)
- Gulzat Nuroldayeva
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
- Institute of Batteries LLC, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Mannix P Balanay
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| |
Collapse
|
7
|
Fan Q, Fan H, Li K, Hou C, Zhang Q, Li Y, Wang H. Stretchable, Electrochemically-Stable Electrochromic Devices Based on Semi-Embedded Ag@Au Nanowire Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208234. [PMID: 36866459 DOI: 10.1002/smll.202208234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Indexed: 06/02/2023]
Abstract
Stretchable electrochromic (EC) devices that can adapt the irregular and dynamic human surfaces show promising applications in wearable display, adaptive camouflage, and visual sensation. However, challenges exist in lacking transparent conductive electrodes with both tensile and electrochemical stability to assemble the complex device structure and endure harsh electrochemical redox reactions. Herein, a wrinkled, semi-embedded Ag@Au nanowire (NW) networks are constructed on elastomer substrates to fabricate stretchable, electrochemically-stable conductive electrodes. The stretchable EC devices are then fabricated by sandwiching a viologen-based gel electrolyte between two conductive electrodes with the semi-embedded Ag@Au NW network. Because the inert Au layer inhibits the oxidation of Ag NWs, the EC device exhibits much more stable color changes between yellow and green than those with pure Ag NW networks. In addition, since the wrinkled semi-embedded structure is deformable and reversibly stretched without serious fractures, the EC devices still maintain excellent color-changing stability under 40% stretching/releasing cycles.
Collapse
Affiliation(s)
- Qingchao Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongwei Fan
- Instrumental Analysis & Research Center, Shanghai University, Shanghai, 200444, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
8
|
Nazari P, Bäuerle R, Zimmermann J, Melzer C, Schwab C, Smith A, Kowalsky W, Aghassi-Hagmann J, Hernandez-Sosa G, Lemmer U. Piezoresistive Free-standing Microfiber Strain Sensor for High-resolution Battery Thickness Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212189. [PMID: 36872845 DOI: 10.1002/adma.202212189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Indexed: 05/26/2023]
Abstract
Highly sensitive microfiber strain sensors are promising for the detection of mechanical deformations in applications where limited space is available. In particular for in situ battery thickness monitoring where high resolution and low detection limit are key requirements. Herein, the realization of a highly sensitive strain sensor for in situ lithium-ion (Li-ion) battery thickness monitoring is presented. The compliant fiber-shaped sensor is fabricated by an upscalable wet-spinning method employing a composite of microspherical core-shell conductive particles embedded in an elastomer. The electrical resistance of the sensor changes under applied strain, exhibiting a high strain sensitivity and extremely low strain detection limit of 0.00005 with high durability of 10 000 cycles. To demonstrate the accuracy and ease of applicability of this sensor, the real-time thickness change of a Li-ion battery pouch cell is monitored during the charge and discharge cycles. This work introduces a promising approach with the least material complexity for soft microfiber strain gauges.
Collapse
Affiliation(s)
- Pariya Nazari
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
| | - Rainer Bäuerle
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of High Frequency Technology, Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany
| | | | | | - Christopher Schwab
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna Smith
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Kowalsky
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of High Frequency Technology, Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Chen H, Xu H, Luo M, Wang W, Qing X, Lu Y, Liu Q, Yang L, Zhong W, Li M, Wang D. Highly Conductive, Ultrastrong, and Flexible Wet-Spun PEDOT:PSS/Ionic Liquid Fibers for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20346-20357. [PMID: 37043771 DOI: 10.1021/acsami.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers with high electrical conductivity, flexibility, and robustness are urgently needed for constructing wearable fiber-based electronics. In this study, the highly conductive (4288 S/cm), ultrastrong (a high tensile strength of 956 MPa), and flexible (a low Young's modulus of 3.8 GPa) PEDOT:PSS/1-ethyl-3-methylimidazolium dicyanamide (EMIM:DCA) (P/ED) fiber was prepared by wet-spinning and a subsequent H2SO4-immersion-drawing process. As far as we know, this is the best performance of the PEDOT:PSS fiber reported so far. The structure and conformation of the P/ED fiber were characterized by FESEM, XPS, Raman spectroscopy, UV-vis-NIR spectroscopy, and WAXS. The results show that the high performances of the P/ED fiber are mainly attributed to the massive removal of PSS and high degree of crystallinity (87.9%) and orientation (0.71) of PEDOT caused by the synergistic effect of the ionic liquid, concentrated sulfuric acid, and high stretching. Besides, the P/ED fiber shows a small bending radius of 0.1 mm, and the conductivity of the P/ED fiber is nearly unchanged after 1000 repeated cycles of bending and humidity changes within 50-90%. Based on this, various P/ED fiber-based devices including the circuit connection wire, thermoelectric power generator, and temperature sensor were constructed, demonstrating its wide applications for constructing flexible and wearable electronics.
Collapse
Affiliation(s)
- Huijun Chen
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Huimin Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Mengying Luo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wen Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xing Qing
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Ying Lu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Qiongzhen Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Liyan Yang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Weibing Zhong
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
10
|
Qin J, Lu M, Li B, Li X, You G, Tan L, Zhai Y, Huang M, Wu Y. A Rapid Quantitative Analysis of Bicomponent Fibers Based on Cross-Sectional In-Situ Observation. Polymers (Basel) 2023; 15:polym15040842. [PMID: 36850127 PMCID: PMC9964497 DOI: 10.3390/polym15040842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
To accelerate the industrialization of bicomponent fibers, fiber-based flexible devices, and other technical fibers and to protect the property rights of inventors, it is necessary to develop fast, economical, and easy-to-test methods to provide some guidance for formulating relevant testing standards. A quantitative method based on cross-sectional in-situ observation and image processing was developed in this study. First, the cross-sections of the fibers were rapidly prepared by the non-embedding method. Then, transmission and reflection metallographic microscopes were used for in-situ observation and to capture the cross-section images of fibers. This in-situ observation allows for the rapid identification of the type and spatial distribution structure of the bicomponent fiber. Finally, the mass percentage content of each component was calculated rapidly by AI software according to its density, cross-section area, and total test samples of each component. By comparing the ultra-depth of field microscope, differential scanning calorimetry (DSC), and chemical dissolution method, the quantitative analysis was fast, accurate, economical, simple to operate, energy-saving, and environmentally friendly. This method will be widely used in the intelligent qualitative identification and quantitative analysis of bicomponent fibers, fiber-based flexible devices, and blended textiles.
Collapse
Affiliation(s)
- Jieyao Qin
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Mingxi Lu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Bin Li
- College of Innovation and Entrepreneurship, Wuyi University, Jiangmen 529020, China
| | - Xiaorui Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Guangming You
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Linjian Tan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yikui Zhai
- College of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Meilin Huang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
- Correspondence: (M.H.); (Y.W.)
| | - Yingzhu Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
- Correspondence: (M.H.); (Y.W.)
| |
Collapse
|
11
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
12
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
13
|
Wang B, Zhang W, Zhao F, Yu WW, Elezzabi AY, Liu L, Li H. An overview of recent progress in the development of flexible electrochromic devices. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Xia Z, Li S, Wu G, Shao Y, Yang D, Luo J, Jiao Z, Sun J, Shao Y. Manipulating Hierarchical Orientation of Wet-Spun Hybrid Fibers via Rheological Engineering for Zn-Ion Fiber Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203905. [PMID: 35765207 DOI: 10.1002/adma.202203905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Wet-spinning is a promising strategy to fabricate fiber electrodes for real commercial fiber battery applications, according to its great compatibility with large-scale fiber production. However, engineering the rheological properties of the electrochemical active materials to accommodate the viscoelasticity or liquid crystalline requirements for continuous wet-spinning remains a daunting challenge. Here, with entropy-driven volume-exclusion effects, the rheological behavior of vanadium pentoxide (V2 O5 ) nanowire dispersions is regulated through introducing 2D graphene oxide (GO) flakes in an optimal ratio. By optimizing the viscoelasticity and liquid-crystalline behavior of the spinning dope, the wet-spun hybrid fibers display controlled hierarchical orientation. The wet-spun V2 O5 /rGO hybrid fiber with the optimal 10:1 mass fraction (V2 O5 /rGO10:1 ) exhibits a highly oriented nanoblock arrangement, enabling efficient Zn-ion migration and an excellent Zn-ion storage capacity of 486.03 mAh g-1 at 0.1 A g-1 . A half-meter long quasi-solid-state fiber Zn-ion battery is assembled with a polyacrylamide gel electrolyte and biocompatible Ecoflex encapsulation. The thus-derived fiber Zn-ion battery is integrated into a wearable self-powered system, incorporating a highly efficient GaAs solar cell, which delivers a record-high overall efficiency (9.80%) for flexible solar charging systems.
Collapse
Affiliation(s)
- Zhou Xia
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Shuo Li
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Guiqing Wu
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yanyan Shao
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Dongzi Yang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Jinrong Luo
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Zhenyang Jiao
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Yuanlong Shao
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Yong S, Hillier N, Beeby S. Fabrication of a Flexible Aqueous Textile Zinc-Ion Battery in a Single Fabric Layer. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.866527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc-ion batteries (ZIB), with various manganese oxide-based cathodes, provide a promising solution for textile-based flexible energy storage devices. This paper demonstrates, for the first time, a flexible aqueous ZIB with manganese-based cathode fabricated in a single woven polyester cotton textile. The textile was functionalized with a flexible polymer membrane layer that fills the gaps between textile yarns, enabling fine control over the depth of penetration of the spray deposited manganese oxide cathode and zinc anode. This leaves an uncoated region in the textile-polymer network that acts as the battery’s separator. The textile battery cell was vacuum impregnated with the aqueous electrolyte, achieving good wettability of the electrodes with the electrolyte. Additionally, the choice of cathodic material and its influence over the electrochemical performance of the zinc ion battery was investigated with commercially available Manganese (IV) oxide and Manganese (II, III) oxide. The textile ZIB with Manganese (II, III) oxide cathode (10.9 mAh g−1 or 35.6 µA h.cm−2) achieved better performance than the textile ZIB with Manganese (IV) oxide (8.95 mAh g−1 or 24.2 µAh cm−2) at 1 mA cm−2 (0.3 A g−1). This work presents a novel all-textile battery architecture and demonstrates the capability of using manganese oxides as cathodes for a full textile-based flexible aqueous ZIB.
Collapse
|
16
|
Alhashmi Alamer F, Beyari RF. Overview of the Influence of Silver, Gold, and Titanium Nanoparticles on the Physical Properties of PEDOT:PSS-Coated Cotton Fabrics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1609. [PMID: 35564317 PMCID: PMC9105909 DOI: 10.3390/nano12091609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Metallic nanoparticles have been of interest to scientists, and they are now widely used in biomedical and engineering applications. The importance, categorization, and characterization of silver nanoparticles, gold nanoparticles, and titanium nanoparticles have been discussed. Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) is the most practical and reliable conductive polymer used in the manufacturing of conductive textiles. The effects of metallic nanoparticles on the performance of PEDOT:PSS thin films are discussed. The results indicated that the properties of PEDOT:PSS significantly depended on the synthesis technique, doping, post-treatment, and composite material. Further, electronic textiles known as smart textiles have recently gained popularity, and they offer a wide range of applications. This review provides an overview of the effects of nanoparticles on the physical properties of PEDOT:PSS-coated cotton fabrics.
Collapse
Affiliation(s)
- Fahad Alhashmi Alamer
- Department of Physics, Faculty of Applied Science, Umm AL-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia;
| | | |
Collapse
|
17
|
Hwang YH, Noh B, Lee J, Lee HS, Park Y, Choi KC. High-Performance and Reliable White Organic Light-Emitting Fibers for Truly Wearable Textile Displays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104855. [PMID: 35072356 PMCID: PMC9008425 DOI: 10.1002/advs.202104855] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Light-emitting fibers have been intensively developed for the realization of textile displays and various lighting applications, as promising free-form electronics with outstanding interconnectivity. These advances in the fiber displays have been made possible by the successful implementation of the core technologies of conventional displays, including high optoelectronic performance and essential elements, in the fiber form-factor. However, although white organic light-emitting diodes (WOLEDs), as a fundamental core technology of displays, are essential for realizing full-color displays and solid-state lighting, fiber-based WOLEDs are still challenging due to structural issues and the lack of approaches to implementing WOLEDs on fiber. Herein, the first fiber WOLED is reported, exhibiting high optoelectronic performance and a reliable color index, comparable to those of conventional planar WOLEDs. As key features, it is found that WOLEDs can be successfully introduced on a cylindrical fiber using a dip-coatable single white-emission layer based on simulation and optimization of the white spectra. Furthermore, to ensure durability from usage, the fiber WOLED is encapsulated by an Al2 O3 /elastomer bilayer, showing stable operation under repetitive bending and pressure, and in water. This pioneering work is believed to provide building blocks for realizing complete textile display technologies by complementing the lack of the core technology.
Collapse
Affiliation(s)
- Yong Ha Hwang
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Byeongju Noh
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Junwoo Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Ho Seung Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Yongjin Park
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
18
|
Li B, Dang J, Zhuang Q, Lv Z. Recent Advances in Inorganic Electrochromic Materials from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. Chem Asian J 2022; 17:e202200022. [PMID: 35191172 DOI: 10.1002/asia.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/19/2022] [Indexed: 11/10/2022]
Abstract
For the assembly of electrochromic devices (ECDs) generally with multilayer structures, supportive components usually are needed to be incorporated with EC materials. The reasonable project and development of ECDs will achieve broad expected applications. In this study, we reviewed several impressive methods to design and fabricate ECDs with high-performance and versatility based on recent frontier research. The first part of the review is centered on the desirability and strengthening mechanism of nanostructured inorganic EC materials. The second part illustrates the recent advances in transparent conductors. We then summarize the demands and means to modify the formation of electrolytes for practicable ECDs. Moreover, efforts to increase the compatibility with the EC layer and ion capacity are delineated. In the end, the application prospects of inorganic ECDs are further explored, which offers a guideline for the industrialization process of ECDs.
Collapse
Affiliation(s)
- Borui Li
- National Innovation Center of high speed train, National Innovation center of high speed train, CHINA
| | - Jie Dang
- Chongqing University, College of Materials Science and Engineering, Shapingba Strict 174, 400044, Chongqing, CHINA
| | - Qianyu Zhuang
- National innovation (Qingdao) high speed train material research institute Co. LTD, National innovation (Qingdao) high speed train material research insitute Co. LTD, CHINA
| | - Zepeng Lv
- Chongqing University, College of Materials Science and Engineering, CHINA
| |
Collapse
|