1
|
Alwan A, Khalil F, Bowlby J, Peko G, Estrada EV, Singh S, Deep G, Zhang Y, Farney AC, Opara EC. Effect of controlled release of HGF on extracellular vesicle secretion by urine-derived stem cells. Front Bioeng Biotechnol 2024; 12:1436296. [PMID: 39234273 PMCID: PMC11371732 DOI: 10.3389/fbioe.2024.1436296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction The hepatic growth factor (HGF) stimulates DNA synthesis and cell proliferation and plays a role in tissue protection and regeneration. In this study, we have examined the effect of incubation of HGF with urine-derived stem cells (USCs) on the secretion of small extracellular vesicles (sEV) by the cells. Materials and Methods HGF in the incubation medium was either a bolus administration or a controlled release of an equivalent amount from microbeads within the size range of 50-200 µm made with ultrapurified low-viscosity high-guluronic acid (UP-LVG) alginate. USCs were incubated with or without HGF for 3 days or 7 days before removal of the incubation media, followed by harvesting sEV by the precipitation method. The protein content of isolated sEV was measured by bicinchoninic acid assay (BCA) for these three groups: control (no HGF beads), bolus HGF, and HGF beads. We also performed nanoparticle tracking analysis (NTA), Western blot assay, and ELISA for the HGF content of samples. Results We found a significantly higher concentration of proteins in the HGF microbead group (control release group) compared to the bolus group and the control group after 7 days (p < 0.0017). The NTA data aligned with the BCA; they showed a significantly higher concentration of particles within the size range of sEV (<200 nm) in the group treated with HGF beads compared to the two other groups on day 7 (p < 0.0001). Conclusion We found that administration of HGF to USCs by controlled release of the growth factor significantly enhances the levels of sEV secretion during 7 days of incubation.
Collapse
Affiliation(s)
- Abdelrahman Alwan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fatma Khalil
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Joshua Bowlby
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gabrielle Peko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Exel Valle Estrada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sangeeta Singh
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gagan Deep
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alan C Farney
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
2
|
Sharma V, Nikolajeff F, Kumar S. Employing nanoparticle tracking analysis of salivary neuronal exosomes for early detection of neurodegenerative diseases. Transl Neurodegener 2023; 12:7. [PMID: 36747288 PMCID: PMC9903484 DOI: 10.1186/s40035-023-00339-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a set of progressive and currently incurable diseases that are primarily caused by neuron degeneration. Neurodegenerative diseases often lead to cognitive impairment and dyskinesias. It is now well recognized that molecular events precede the onset of clinical symptoms by years. Over the past decade, intensive research attempts have been aimed at the early diagnosis of these diseases. Recently, exosomes have been shown to play a pivotal role in the occurrence and progression of many diseases including cancer and neurodegenerative diseases. Additionally, because exosomes can cross the blood-brain barrier, they may serve as a diagnostic tool for neural dysfunction. In this review, we detail the mechanisms and current challenges of these diseases, briefly review the role of exosomes in the progression of neurodegenerative diseases, and propose a novel strategy based on salivary neuronal exosomes and nanoparticle tracking analysis that could be employed for screening the early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Saroj Kumar
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Hussen BM, Faraj GSH, Rasul MF, Hidayat HJ, Salihi A, Baniahmad A, Taheri M, Ghafouri-Frad S. Strategies to overcome the main challenges of the use of exosomes as drug carrier for cancer therapy. Cancer Cell Int 2022; 22:323. [PMID: 36258195 PMCID: PMC9580186 DOI: 10.1186/s12935-022-02743-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Exosomes are naturally occurring nanosized particles that aid intercellular communication by transmitting biological information between cells. Exosomes have therapeutic efficacy that can transfer their contents between cells as natural carriers. In addition, the exosomal contents delivered to the recipient pathological cells significantly inhibit cancer progression. However, exosome-based tumor treatments are inadequately precise or successful, and various challenges should be adequately overcome. Here, we discuss the significant challenges that exosomes face as drug carriers used for therapeutic targets and strategies for overcoming these challenges in order to promote this new incoming drug carrier further and improve future clinical outcomes. We also present techniques for overcoming these challenges.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- College of Medicine, Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Frad
- Department of Medical Genetics,, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Nanoparticle tracking analysis and statistical mixture distribution analysis to quantify nanoparticle-vesicle binding. J Colloid Interface Sci 2022; 615:50-58. [PMID: 35123359 DOI: 10.1016/j.jcis.2022.01.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 11/21/2022]
Abstract
Nanoparticle tracking analysis (NTA) is a single particle tracking technique that in principle provides a more direct measure of particle size distribution compared to dynamic light scattering (DLS). Here, we demonstrate how statistical mixture distribution analysis can be used in combination with NTA to quantitatively characterize the amount and extent of particle binding in a mixture of nanomaterials. The combined approach is used to study the binding of gold nanoparticles to two types of phospholipid vesicles, those containing and lacking the model ion channel peptide gramicidin A. This model system serves as both a proof of concept for the method and a demonstration of the utility of the approach in studying nano-bio interactions. Two diffusional models (Stokes-Einstein and Kirkwood-Riseman) were compared in the determination of particle size, extent of binding, and nanoparticle:vesicle binding ratios for each vesicle type. The combination of NTA and statistical mixture distributions is shown to be a useful method for quantitative assessment of the extent of binding between particles and determination of binding ratios.
Collapse
|
5
|
Fernández-Castané A, Li H, Joseph S, Ebeler M, Franzreb M, Bracewell DG, Overton TW, Thomas OR. Nanoparticle tracking analysis as a process analytical tool for characterising magnetosome preparations. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Hoover BM, Shen Z, Gahan CG, Lynn DM, Van Lehn RC, Murphy RM. Membrane Remodeling and Stimulation of Aggregation Following α-Synuclein Adsorption to Phosphotidylserine Vesicles. J Phys Chem B 2021; 125:1582-1594. [DOI: 10.1021/acs.jpcb.0c09192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brandon M. Hoover
- Biophysics Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Zhizhang Shen
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Curran G. Gahan
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Reid C. Van Lehn
- Biophysics Program, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Moore C, Wing R, Pham T, Jokerst JV. Multispectral Nanoparticle Tracking Analysis for the Real-Time and Label-Free Characterization of Amyloid-β Self-Assembly In Vitro. Anal Chem 2020; 92:11590-11599. [PMID: 32786456 PMCID: PMC8411845 DOI: 10.1021/acs.analchem.0c01048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The deposition of amyloid β (Aβ) plaques and fibrils in the brain parenchyma is a hallmark of Alzheimer's disease (AD), but a mechanistic understanding of the role Aβ plays in AD has remained unclear. One important reason could be the limitations of current tools to size and count Aβ fibrils in real time. Conventional techniques from molecular biology largely use ensemble averaging; some microscopy analyses have been reported but suffer from low throughput. Nanoparticle tracking analysis is an alternative approach developed in the past decade for sizing and counting particles according to their Brownian motion; however, it is limited in sensitivity to polydisperse solutions because it uses only one laser. More recently, multispectral nanoparticle tracking analysis (MNTA) was introduced to address this limitation; it uses three visible wavelengths to quantitate heterogeneous particle distributions. Here, we used MNTA as a label-free technique to characterize the in vitro kinetics of Aβ1-42 aggregation by measuring the size distributions of aggregates during self-assembly. Our results show that this technology can monitor the aggregation of 106-108 particles/mL with a temporal resolution between 15 and 30 min. We corroborated this method with the fluorescent Thioflavin-T assay and transmission electron microscopy (TEM), showing good agreement between the techniques (Pearson's r = 0.821, P < 0.0001). We also used fluorescent gating to examine the effect of ThT on the aggregate size distribution. Finally, the biological relevance was demonstrated via fibril modulation in the presence of a polyphenolic Aβ disruptor. In summary, this approach measures Aβ assembly similar to ensemble-type measurements but with per-fibril resolution.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ryan Wing
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Timothy Pham
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Noble JM, Roberts LM, Vidavsky N, Chiou AE, Fischbach C, Paszek MJ, Estroff LA, Kourkoutis LF. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J Struct Biol 2020; 210:107474. [PMID: 32032755 PMCID: PMC7067680 DOI: 10.1016/j.jsb.2020.107474] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/06/2019] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
As interest in the role of extracellular vesicles in cell-to-cell communication has increased, so has the use of microscopy and analytical techniques to assess their formation, release, and morphology. In this study, we evaluate scanning electron microscopy (SEM) and cryo-SEM for characterizing the formation and shedding of vesicles from human breast cell lines, parental and hyaluronan synthase 3-(HAS3)-overexpressing MCF10A cells, grown directly on transmission electron microscopy (TEM) grids. While cells imaged with conventional and cryo-SEM exhibit distinct morphologies due to the sample preparation process for each technique, tubular structures protruding from the cell surfaces were observed with both approaches. For HAS3-MCF10A cells, vesicles were present along the length of membrane protrusions. Once completely shed from the cells, extracellular vesicles were characterized using nanoparticle tracking analysis (NTA) and cryo-TEM. The size distributions obtained by each technique were different not only in the range of vesicles analyzed, but also in the relative proportion of smaller-to-larger vesicles. These differences are attributed to the presence of biological debris in the media, which is difficult to differentiate from vesicles in NTA. Furthermore, we demonstrate that cryo-TEM can be used to distinguish between vesicles based on their respective surface structures, thereby providing a path to differentiating vesicle subpopulations and identifying their size distributions. Our study emphasizes the necessity of pairing several techniques to characterize extracellular vesicles.
Collapse
Affiliation(s)
- Jade M Noble
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - LaDeidra Monét Roberts
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Netta Vidavsky
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Hoover BM, Murphy RM. Evaluation of Nanoparticle Tracking Analysis for the Detection of Rod-Shaped Particles and Protein Aggregates. J Pharm Sci 2019; 109:452-463. [PMID: 31604086 DOI: 10.1016/j.xphs.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Nanoparticle tracking analysis (NTA) is an important technique for measuring hydrodynamic size of globular biological particles including liposomes and viruses. Less attention has been paid to NTA of rod-like particles, despite their considerable interest. For example, amyloid fibrils and protofibrils are protein aggregates with rod-like morphology, diameters of 2-15 nm, and lengths from 50 nm to 1 μm, and linked to diseases including Alzheimer's and Parkinson's. We used NTA to measure the concentration and hydrodynamic size of gold nanorods (10 nm diameter, 35-250 nm length) and myosin (2 nm diameter, 160 nm length), as models of rod-like particles. Measured hydrodynamic diameters of gold nanorods were consistent with theoretical calculations, as long as particle concentration and solution conditions were controlled. Myosin monomers were invisible by NTA, but a small population of aggregates was detected. We combined NTA results with other light scattering data to gain insight into number and size distribution of protein solutions containing both monomer and aggregates. Finally, we demonstrated the utility of NTA and its limitations by characterizing aggregates of alpha-synuclein. Of note is the use of NTA to detect a change in morphology from compact to elongated by analyzing the ratio of hydrodynamic size to intensity.
Collapse
Affiliation(s)
- Brandon M Hoover
- Biophysics Program, University of Wisconsin, Madison, Wisconsin 53706
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
10
|
Kim A, Ng WB, Bernt W, Cho NJ. Validation of Size Estimation of Nanoparticle Tracking Analysis on Polydisperse Macromolecule Assembly. Sci Rep 2019; 9:2639. [PMID: 30804441 PMCID: PMC6389903 DOI: 10.1038/s41598-019-38915-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
As the physicochemical properties of drug delivery systems are governed not only by the material properties which they are compose of but by their size that they conform, it is crucial to determine the size and distribution of such systems with nanometer-scale precision. The standard technique used to measure the size distribution of nanometer-sized particles in suspension is dynamic light scattering (DLS). Recently, nanoparticle tracking analysis (NTA) has been introduced to measure the diffusion coefficient of particles in a sample to determine their size distribution in relation to DLS results. Because DLS and NTA use identical physical characteristics to determine particle size but differ in the weighting of the distribution, NTA can be a good verification tool for DLS and vice versa. In this study, we evaluated two NTA data analysis methods based on maximum-likelihood estimation, namely finite track length adjustment (FTLA) and an iterative method, on monodisperse polystyrene beads and polydisperse vesicles by comparing the results with DLS. The NTA results from both methods agreed well with the mean size and relative variance values from DLS for monodisperse polystyrene standards. However, for the lipid vesicles prepared in various polydispersity conditions, the iterative method resulted in a better match with DLS than the FTLA method. Further, it was found that it is better to compare the native number-weighted NTA distribution with DLS, rather than its converted distribution weighted by intensity, as the variance of the converted NTA distribution deviates significantly from the DLS results.
Collapse
Affiliation(s)
- Ahram Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Wei Beng Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore, Singapore
| | - William Bernt
- Particle Characterization Laboratories, Inc. 845 Olive Ave, Suite A, Novato, CA, 94945, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore.
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore.
| |
Collapse
|
11
|
Pellerano M, Naud-Martin D, Mahuteau-Betzer F, Morille M, Morris MC. Fluorescent Biosensor for Detection of the R248Q Aggregation-Prone Mutant of p53. Chembiochem 2019; 20:605-613. [PMID: 30548750 DOI: 10.1002/cbic.201800531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/10/2018] [Indexed: 01/28/2023]
Abstract
The p53 tumour suppressor and guardian of the genome undergoes missense mutations that lead to functional inactivation in 50 % of human cancers. These mutations occur mostly in the DNA-binding domain of the protein, and several of these result in conformational changes that lead to amyloid-like protein aggregation. Herein, we describe a fluorescent biosensor that reports on the R248Q mutant of p53 in vitro and in living cells, engineered through conjugation of an environmentally sensitive probe onto a peptide derived from the primary aggregation segment of p53. This biosensor was characterised both in vitro and by means of fluorescence microscopy following facilitated delivery into cultured cells. It is shown that this biosensor preferentially reports on the p53 R248Q mutant in the PC9 lung cancer cell line compared with other lung cancer cell lines harbouring either wild-type or no p53.
Collapse
Affiliation(s)
- Morgan Pellerano
- Institut des Biomolécules Max Mousseron-IBMM-UMR 5247, Université de Montpellier, Faculté de Pharmacie, 15, Av. Charles Flahault, 34093, Montpellier, France
| | - Delphine Naud-Martin
- Institut Curie, PSL Research University, CNRS, INSERM, UMR9187-U1196, 91405, Orsay, France
| | | | - Marie Morille
- Institut Charles Gerhardt-UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Faculté de Pharmacie, 15, Av. Charles Flahault, 34093, Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron-IBMM-UMR 5247, Université de Montpellier, Faculté de Pharmacie, 15, Av. Charles Flahault, 34093, Montpellier, France
| |
Collapse
|
12
|
Yoneda S, Niederleitner B, Wiggenhorn M, Koga H, Totoki S, Krayukhina E, Friess W, Uchiyama S. Quantitative Laser Diffraction for Quantification of Protein Aggregates: Comparison With Resonant Mass Measurement, Nanoparticle Tracking Analysis, Flow Imaging, and Light Obscuration. J Pharm Sci 2019; 108:755-762. [DOI: 10.1016/j.xphs.2018.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/20/2023]
|
13
|
Comparison of particle size methodology and assessment of nanoparticle tracking analysis (NTA) as a tool for live monitoring of crystallisation pathways. Eur J Pharm Biopharm 2018; 130:314-326. [DOI: 10.1016/j.ejpb.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 11/18/2022]
|
14
|
Mangrolia P, Murphy RM. Retinol-Binding Protein Interferes with Transthyretin-Mediated β-Amyloid Aggregation Inhibition. Biochemistry 2018; 57:5029-5040. [PMID: 30024734 PMCID: PMC6530574 DOI: 10.1021/acs.biochem.8b00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-Amyloid (Aβ) aggregation is causally linked to Alzheimer's disease. On the basis of in vitro and transgenic animal studies, transthyretin (TTR) is hypothesized to provide neuroprotection against Aβ toxicity by binding to Aβ and inhibiting its aggregation. TTR is a homotetrameric protein that circulates in blood and cerebrospinal fluid; its normal physiological role is as a carrier for thyroxine and retinol-binding protein (RBP). RBP forms a complex with retinol, and the holoprotein (hRBP) binds with high affinity to TTR. In this study, the role of TTR ligands in TTR-mediated inhibition of Aβ aggregation was investigated. hRBP strongly reduced the ability of TTR to inhibit Aβ aggregation. The effect was not due to competition between Aβ and hRBP for binding to TTR, as Aβ bound equally well to TTR-hRBP complexes and TTR. hRBP is known to stabilize the TTR tetrameric structure. We show that Aβ partially destabilizes TTR and that hRBP counteracts this destabilization. Taken together, our results support a mechanism wherein TTR-mediated inhibition of Aβ aggregation requires not only TTR-Aβ binding but also destabilization of TTR quaternary structure.
Collapse
Affiliation(s)
- Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases 2018; 13:040801. [DOI: 10.1116/1.5037582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Abstract
Protein aggregates are the pathological agents in several neurodegenerative disorders such as Alzheimer's and Huntington's disease. In the pharmaceutical industry, protein aggregation poses significant challenges to the manufacture of biologics. Nanoparticle tracking is an emerging technology that allows particle-by-particle measurement of aggregate size and concentration. The technique is solution based, and requires no labeling. Here we describe protocols for using nanoparticle tracking in protein aggregation research, and provide a few examples for illustrative purposes.
Collapse
|
17
|
Jarzębski M, Bellich B, Białopiotrowicz T, Śliwa T, Kościński J, Cesàro A. Particle tracking analysis in food and hydrocolloids investigations. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Hartman J, Kirby B. Decorrelation correction for nanoparticle tracking analysis of dilute polydisperse suspensions in bulk flow. Phys Rev E 2017; 95:033305. [PMID: 28415349 DOI: 10.1103/physreve.95.033305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 06/07/2023]
Abstract
Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.
Collapse
Affiliation(s)
- John Hartman
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Brian Kirby
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
19
|
Krueger AB, Carnell P, Carpenter JF. Characterization of Factors Affecting Nanoparticle Tracking Analysis Results With Synthetic and Protein Nanoparticles. J Pharm Sci 2016; 105:1434-43. [PMID: 27019960 DOI: 10.1016/j.xphs.2016.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
In many manufacturing and research areas, the ability to accurately monitor and characterize nanoparticles is becoming increasingly important. Nanoparticle tracking analysis is rapidly becoming a standard method for this characterization, yet several key factors in data acquisition and analysis may affect results. Nanoparticle tracking analysis is prone to user input and bias on account of a high number of parameters available, contains a limited analysis volume, and individual sample characteristics such as polydispersity or complex protein solutions may affect analysis results. This study systematically addressed these key issues. The integrated syringe pump was used to increase the sample volume analyzed. It was observed that measurements recorded under flow caused a reduction in total particle counts for both polystyrene and protein particles compared to those collected under static conditions. In addition, data for polydisperse samples tended to lose peak resolution at higher flow rates, masking distinct particle populations. Furthermore, in a bimodal particle population, a bias was seen toward the larger species within the sample. The impacts of filtration on an agitated intravenous immunoglobulin sample and operating parameters including "MINexps" and "blur" were investigated to optimize the method. Taken together, this study provides recommendations on instrument settings and sample preparations to properly characterize complex samples.
Collapse
Affiliation(s)
- Aaron B Krueger
- Department of Pharmaceutical Sciences, University of Colorado Center for Pharmaceutical Biotechnology, Aurora, Colorado 80045
| | | | - John F Carpenter
- Department of Pharmaceutical Sciences, University of Colorado Center for Pharmaceutical Biotechnology, Aurora, Colorado 80045.
| |
Collapse
|
20
|
Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity. Nat Commun 2016; 7:12956. [PMID: 27658367 PMCID: PMC5036154 DOI: 10.1038/ncomms12956] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/18/2016] [Indexed: 01/07/2023] Open
Abstract
Biological nanoparticles (BNPs) are of high interest due to their key role in various biological processes and use as biomarkers. BNP size and composition are decisive for their functions, but simultaneous determination of both properties with high accuracy remains challenging. Optical microscopy allows precise determination of fluorescence/scattering intensity, but not the size of individual BNPs. The latter is better determined by tracking their random motion in bulk, but the limited illumination volume for tracking this motion impedes reliable intensity determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting them to hydrodynamic flows and tracking their motion via surface-sensitive optical imaging enable determination of their diffusion coefficients and flow-induced drifts, from which accurate quantification of both BNP size and emission intensity can be made. For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-squared dependence of their fluorescence intensity for radii down to 15 nm.
Collapse
|
21
|
Abstract
β-Amyloid peptide (Aβ) self-associates into oligomers and fibrils, in a process that is believed to directly lead to neuronal death in Alzheimer's disease. Compounds that bind to Aβ, and inhibit fibrillogenesis and neurotoxicity, are of interest as an anti-Alzheimer therapeutic strategy. Peptides are particularly attractive for this purpose, because they have advantages over small molecules in their ability to disrupt protein-protein interactions, yet they are amenable to tuning of their properties through chemical means, unlike antibodies. Self-complementation and peptide library screening are two strategies that have been employed in the search for peptides that bind to Aβ. We have taken a different approach, by designing Aβ-binding peptides using transthyretin (TTR) as a template. Previously, we demonstrated that a cyclic peptide, with sequence derived from the known Aβ-binding site on TTR, suppressed Aβ aggregation into fibrils and protected neurons against Aβ toxicity. Here, we searched for cyclic peptides with improved efficacy, by employing the algorithm TANGO, designed originally to identify amyloidogenic sequences in proteins. By using TANGO as a guide to predict the effect of sequence modifications on conformation and aggregation, we synthesized a significantly improved cyclic peptide. We demonstrate that the peptide, in binding to Aβ, redirects Aβ toward protease-sensitive, nonfibrillar aggregates. Cyclic peptides designed using this strategy have attractive solubility, specificity, and stability characteristics.
Collapse
Affiliation(s)
- Xiaomeng Lu
- Biophysics Program, and ‡Department of
Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Claire R. Brickson
- Biophysics Program, and ‡Department of
Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Biophysics Program, and ‡Department of
Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Mangrolia P, Yang DT, Murphy RM. Transthyretin variants with improved inhibition of β-amyloid aggregation. Protein Eng Des Sel 2016; 29:209-218. [PMID: 27099354 DOI: 10.1093/protein/gzw008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023] Open
Abstract
Aggregation of β-amyloid (Aβ) is widely believed to cause neuronal dysfunction in Alzheimer's disease. Transthyretin (TTR) binds to Aβ and inhibits its aggregation and neurotoxicity. TTR is a homotetrameric protein, with each monomer containing a short α-helix and two anti-parallel β-sheets. Dimers pack into tetramers to form a hydrophobic cavity. Here we report the discovery of a TTR mutant, N98A, that was more effective at inhibiting Aβ aggregation than wild-type (WT) TTR, although N98A and WT bound Aβ equally. The N98A mutation is located on a flexible loop distant from the putative Aβ-binding sites and does not alter secondary and tertiary structures nor prevent correct assembly into tetramers. Under non-physiological conditions, N98A tetramers were kinetically and thermodynamically less stable than WT, suggesting a difference in the tetramer folded structure. In vivo, the lone cysteine in TTR is frequently modified by S-cysteinylation or S-sulfonation. Like the N98A mutation, S-cysteinylation of TTR modestly decreased tetramer stability and increased TTR's effectiveness at inhibiting Aβ aggregation. Collectively, these data indicate that a subtle change in TTR tetramer structure measurably increases TTR's ability to inhibit Aβ aggregation.
Collapse
Affiliation(s)
- Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Dennis T Yang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| |
Collapse
|
23
|
Zhou C, Krueger AB, Barnard JG, Qi W, Carpenter JF. Characterization of Nanoparticle Tracking Analysis for Quantification and Sizing of Submicron Particles of Therapeutic Proteins. J Pharm Sci 2015; 104:2441-50. [DOI: 10.1002/jps.24510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/02/2015] [Accepted: 05/04/2015] [Indexed: 01/15/2023]
|
24
|
Lu X, Murphy RM. Asparagine Repeat Peptides: Aggregation Kinetics and Comparison with Glutamine Repeats. Biochemistry 2015. [PMID: 26204228 DOI: 10.1021/acs.biochem.5b00644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acid repeat runs are common occurrences in eukaryotic proteins, with glutamine (Q) and asparagine (N) as particularly frequent repeats. Abnormal expansion of Q-repeat domains causes at least nine neurodegenerative disorders, most likely because expansion leads to protein misfolding, aggregation, and toxicity. The linkage between Q-repeats and disease has motivated several investigations into the mechanism of aggregation and the role of Q-repeat length in aggregation. Curiously, glutamine repeats are common in vertebrates, whereas N-repeats are virtually absent in vertebrates, but common in invertebrates. One hypothesis for the lack of N-repeats in vertebrates is biophysical; that is, there is strong selective pressure in higher organisms against aggregation-prone proteins. If true, then asparagine and glutamine repeats must differ substantially in their aggregation properties despite their chemical similarities. In this work, aggregation of peptides with asparagine repeats of variable length (12-24) were characterized and compared to that of similar peptides with glutamine repeats. As with glutamine, aggregation of N-repeat peptides was strongly length-dependent. Replacement of glutamine with asparagine caused a subtle shift in the conformation of the monomer, which strongly affected the rate of aggregation. Specifically, N-repeat peptides adopted β-turn structural elements, leading to faster self-assembly into globular oligomers and much more rapid conversion into fibrillar aggregates, compared to Q-repeat peptides. These biophysical differences may account for the differing biological roles of N- versus Q-repeat domains.
Collapse
Affiliation(s)
- Xiaomeng Lu
- †Biophysics Program and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Regina M Murphy
- †Biophysics Program and ‡Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
|