1
|
Liu S, Yuan X, Shao Z, Xiang K, Huang W, Tian H, Hong F, Huang Y. Investigation of singlet oxygen and superoxide radical produced from vortex-based hydrodynamic cavitation: Mechanism and its relation to cavitation intensity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172761. [PMID: 38670357 DOI: 10.1016/j.scitotenv.2024.172761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Presently, the hydroxyl radical oxidation mechanism is widely acknowledged for the degradation of organic pollutants based on hydrodynamic cavitation technology. The presence and production mechanism of other potential reactive oxygen species (ROS) in the cavitation systems are still unclear. In this paper, singlet oxygen (1O2) and superoxide radical (·O2-) were selected as the target ROS, and their generation rules and mechanism in vortex-based hydrodynamic cavitation (VBHC) were analyzed. Computational fluid dynamics (CFD) were used to simulate and analyze the intensity characteristics of VBHC, and the relationship between the generation of ROS and cavitation intensity was thoroughly revealed. The results show that the operating conditions of the device have a significant and complicated influence on the generation of 1O2 and ·O2-. When the inlet pressure reaches to 4.5 bar, it is more favorable for the generation of 1O2 and ·O2- comparing with those lower pressure. However, higher temperature (45 °C) and aeration rate (15 (L/min)/L) do not always have positive effect on the 1O2 and ·O2- productions, and their optimal parameters need to be analyzed in combination with the inlet pressure. Through quenching experiments, it is found that 1O2 is completely transformed from ·O2-, and ·O2- comes from the transformation of hydroxyl radicals and dissolved oxygen. Higher cavitation intensity is captured and shown more disperse in the vortex cavitation region, which is consistent with the larger production and stronger diffusion of 1O2 and ·O2-. This paper shed light to the generation mechanism of 1O2 and ·O2- in VBHC reactors and the relationship with cavitation intensity. The conclusion provides new ideas for the research of effective ROS in hydrodynamic cavitation process.
Collapse
Affiliation(s)
- Shuchang Liu
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Xi Yuan
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Zhewen Shao
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Kexin Xiang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Wenfang Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Hailin Tian
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Feng Hong
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Yingping Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
2
|
Upadhyay M, Ravi A, Ranade VV. Dense Oil in Water Emulsions using Vortex-Based Hydrodynamic Cavitation: Effective Viscosity, Sauter Mean Diameter, and Droplet Size Distribution. Ind Eng Chem Res 2024; 63:4977-4990. [PMID: 38525289 PMCID: PMC10958511 DOI: 10.1021/acs.iecr.3c04555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
Vortex-based hydrodynamic cavitation offers an effective platform for producing emulsions. In this work, we have investigated characteristics of dense oil in water emulsions with oil volume fractions up to 60% produced using a vortex-based cavitation device. Emulsions were prepared using rapeseed oil with oil volume fractions of 0.15, 0.3, 0.45, and 0.6. For each of these volume fractions, the pressure drop as a function of the flow rate of emulsions through the cavitation device was measured. These data were used for estimating the effective viscosity of the emulsions. The droplet size distribution of the emulsions was measured using the laser diffraction technique. The influence of the number of passes through the cavitation device on droplet size distributions and the Sauter mean diameter was quantified. It was found that the Sauter mean diameter (d32) decreases with an increase in the number of passes as n-0.2. The Sauter mean diameter was found to be almost independent of oil volume fraction (αo) up to a certain critical volume fraction (αoc). Beyond αoc, d32 was found to be linearly proportional to a further increase in oil volume fraction. As expected, the turbidity of the produced emulsions was found to be linearly proportional to the oil volume fraction. The slope of turbidity versus oil volume fraction can be used to estimate the Sauter mean diameter. A suitable correlation was developed to relate turbidity, volume fraction, and Sauter mean diameter. The droplet breakage efficiency of the vortex-based cavitation device for dense oil in water emulsions was quantified and reported. The breakage efficiency was found to increase linearly with an increase in oil volume fraction up to αoc and then plateau with a further increase in the oil volume fraction. The breakage efficiency was found to decrease with an increase in energy consumption per unit mass (E) as E-0.8. The presented results demonstrate the effectiveness of a vortex-based cavitation device for producing dense oil in water emulsions and will be useful for extending its applications to other dense emulsions.
Collapse
Affiliation(s)
| | | | - Vivek V. Ranade
- Multiphase Reactors and Intensification
Group Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
3
|
Gode A, Madane K, Ranade VV. Design of vortex-based cavitation devices/reactors: Influence of aspect ratio, number of inlets and shape. ULTRASONICS SONOCHEMISTRY 2023; 101:106695. [PMID: 38011805 PMCID: PMC10767635 DOI: 10.1016/j.ultsonch.2023.106695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Vortex-based hydrodynamic cavitation devices are being used in a wide range of applications. However, adequate information on the design of such devices is not available. In this work, we have computationally investigated the influence of key design parameters such as the aspect ratio of the vortex chamber, the number of tangential inlets and the shape of the device on resulting flow characteristics and cavitation. Experiments were carried out to validate key findings from the computational studies. These investigations revealed that the aspect ratio of the vortex chamber as six may be considered as optimum. The performance of single and multiple inlet devices was found to be comparable at the same pressure drop (that is at same energy consumption per m3). Scale-up with a geometric similarity led to a reduction in the extent of cavitation for same energy consumption per m3. For facilitating scale-out option, an attempt was made to simplify the configuration of the vortex-based cavitation device. Computational results indicated that the cavitation performance of simplified configuration was not significantly inferior. A case of the formation of liquid-liquid emulsion was taken as a test case for evaluation of a modified cavitation device based on the present investigations. The droplet size distributions of emulsions generated by both the devices indicate that the proposed simplified configuration, which may facilitate fabrication and offer integrated scale-out options, performs almost at par with a complex configuration. The presented results will be useful for optimising designs of vortex-based hydrodynamic cavitation devices/ reactors.
Collapse
Affiliation(s)
- Amol Gode
- Multiphase Reactors and Intensification Group (mRING), Bernal Institute, University of Limerick, Ireland
| | - Ketan Madane
- Multiphase Reactors and Intensification Group (mRING), Bernal Institute, University of Limerick, Ireland
| | - Vivek V Ranade
- Multiphase Reactors and Intensification Group (mRING), Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
4
|
Thaker A, Ranade VV. Emulsions Using a Vortex-Based Cavitation Device: Influence of Number of Passes, Pressure Drop, and Device Scale on Droplet Size Distributions. Ind Eng Chem Res 2023; 62:18837-18851. [PMID: 38020792 PMCID: PMC10655102 DOI: 10.1021/acs.iecr.2c03714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Liquid-liquid emulsions are used in a variety of industry sectors, including personal care, home care, food, and nutrition. The development of compact and modular systems and devices for creating emulsions with desired droplet size distribution (DSD) is becoming increasingly important. In this work, we have shown use of vortex-based cavitation devices for producing emulsions at nominal flow rate of 1 LPM and 20 LPM. We present new experimental results providing quantitative information on influence of multiple passes through the vortex based hydrodynamic cavitation (HC) device, type of oil and device scale on the breakage process and resulting DSDs. Multiple pass experiments were performed for generating oil-in-water emulsions containing 5 and 15% of oil. Rapeseed oil (RO) and tetrachloroethylene (TCE) were used as oil phases with densities of 915 and 1620 kg/m3, respectively. The effect of pressure drop across the HC device in the range of 50-250 kPa on DSD was examined. The HC device was shown to exhibit significant higher efficiency compared to alternative emulsion making devices (i.e., homogenizers, venturi, and orifice-based HC devices), and the Sauter mean drop size was found to reduce from 66 μm to less than 2 μm after about 50 passes in all the device scales. The DSD of the RO-water system showed a bimodal nature, whereas monomodal DSD was found for TCE-water system. Preliminary simulations using the computational fluid dynamics-population balance model (CFD-PBM) models developed in the previous work indicated the inadequacy of developed models to capture the influence of cavitation on DSDs. By carrying out Hinze scale analysis of bimodal DSD, we for the first time showed the existence of two different mechanisms (one based on conventional turbulent shear and the other based on collapsing cavities) of droplet breakage in HC devices. The order of magnitude of turbulence energy dissipation rates generated due to collapsing cavity estimated using Hinze scale analysis showed good agreement with the values reported from cavity dynamics models. The presented experimental results and analysis will be useful for researchers and engineers interested in developing computational models and compact devices for producing emulsions of the desired DSD.
Collapse
Affiliation(s)
- Abhijeet
H. Thaker
- Multiphase Reactors and Intensification
Group Bernal Institute, University of Limerick, LimerickV94T9PX, Ireland
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification
Group Bernal Institute, University of Limerick, LimerickV94T9PX, Ireland
| |
Collapse
|
5
|
Dong L, Zhao T, Cui Y, Li Z, Chen L, Pang C, Wang Y. Investigation of sludge disintegration using vortex cavitation circulating fluidised grinding technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117290. [PMID: 36642050 DOI: 10.1016/j.jenvman.2023.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Waste-activated sludge (WAS) is regarded as a source of hazardous waste pollution from sewage treatment plants. To efficiently deal with WAS, vortex cavitation circulating fluidised grinding technology (VCCFGT) was proposed as a novel circulating fluidisation technology (CFT) to disintegrate WAS. To be specific, we investigated the effects of disintegration duration, pressure, and filling ratio of mill balls on sludge disintegration. The results of chemical and physical evaluation showed that the values of soluble chemical oxygen demand (SCOD), disintegration degree (DDSCOD), DNA, protein, carbohydrate, and NH4+-N increased with the increase in the filling ratio of the mill balls. Under a pressure and filling ratio of 0.30 MPa and 1.6%, respectively, the maximum effect was achieved after 60 min of treatment. Compared to those in the treatment without mill balls, the values of SCOD, DDSCOD, DNA, protein, carbohydrate, and NH4+-N in the treatment using mill balls increased by 218, 229, 230, 177, 371, and 190%, respectively. As a result of this technology, the temperature of the sludge dramatically increased, rising approximately 42.9 °C. Compared to that of the raw sludge, the sludge particle size after treatment was reduced by 83.25% at most, and the morphology of the sludge comprised smaller flocs. Compared to that of the ball-milling method, the mill balls filling ratio of VCCFGT reduced by 93.60-98.12%. Compared to that of sludge disintegration by the vortex cavitation method, VCCFGT indicating good disintegration degree (increased by 229%) and economic feasibility. VCCFGT has good application prospects for sludge disintegration. The main mechanisms of sludge disintegration and organic release include centrifugal force, grinding, shear force, cavitation, and cyclic fatigue effects, among which grinding plays a leading role. This study concluded that CFT can effectively disintegrate sludge flocs and disrupt bacterial cell walls.
Collapse
Affiliation(s)
- Liang Dong
- Xi'an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi'an, Shanxi, 710000, China
| | - Tong Zhao
- Xi'an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi'an, Shanxi, 710000, China.
| | - Yahui Cui
- Xi'an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi'an, Shanxi, 710000, China
| | - Zhe Li
- Xi'an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi'an, Shanxi, 710000, China
| | - Linping Chen
- Xi'an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi'an, Shanxi, 710000, China
| | - Chaofan Pang
- Xi'an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi'an, Shanxi, 710000, China
| | - Yunqian Wang
- Xi'an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi'an, Shanxi, 710000, China
| |
Collapse
|
6
|
Hong F, Tian H, Yuan X, Liu S, Peng Q, Shi Y, Jin L, Ye L, Jia J, Ying D, Ramsey TS, Huang Y. CFD-assisted modeling of the hydrodynamic cavitation reactors for wastewater treatment - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115982. [PMID: 36104886 DOI: 10.1016/j.jenvman.2022.115982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Hydrodynamic cavitation has been a promising method and technology in wastewater treatment, while the principles based on the design of cavitational reactors to optimize cavitation yield and performance remains lacking. Computational fluid dynamics (CFD), a supplementation of experimental optimization, has become an essential tool for this issue, owing to the merits of low investment and operating costs. Nevertheless, researchers with a non-engineering background or few CFD fundamentals used straightforward numerical strategies to treat cavitating flows, and this might result in many misinterpretations and consequently poor computations. This review paper presents the rationale behind hydrodynamic cavitation and application of cavitation modeling specific to the reactors in wastewater treatment. In particular, the mathematical models of multiphase flow simulation, including turbulence closures and cavitation models, are comprehensively described, whilst the advantages and shortcomings of each model are also identified and discussed. Examples and methods of the coupling of CFD technology, with experimental observations to investigate into the hydrodynamic behavior of cavitating devices that feature linear and swirling flows, are also critically summarized. Modeling issues, which remain unaddressed, i.e., the implementation strategies of numerical models, and the definition of cavitation numbers are identified and discussed. Finally, the advantages of CFD modeling are discussed and the future of CFD applications in this research area is also outlined. It is expected that the present paper would provide decision-making support for CFD beginners to efficiently perform CFD modeling and promote the advancement of cavitation simulation of reactors in the field of wastewater treatment.
Collapse
Affiliation(s)
- Feng Hong
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Hailin Tian
- Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Xi Yuan
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Shuchang Liu
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Qintian Peng
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Yan Shi
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Lei Jin
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Liqun Ye
- Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Diwen Ying
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Thomas Stephen Ramsey
- Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China; College of Economics & Management, China Three Gorges University, Yichang, 443002, China
| | - Yingping Huang
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
7
|
De-Nasri SJ, Sarvothaman VP, Nagarajan S, Manesiotis P, Robertson PKJ, Ranade VV. Quantifying OH radical generation in hydrodynamic cavitation via coumarin dosimetry: Influence of operating parameters and cavitation devices. ULTRASONICS SONOCHEMISTRY 2022; 90:106207. [PMID: 36335794 PMCID: PMC9641053 DOI: 10.1016/j.ultsonch.2022.106207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Hydrodynamic cavitation (HC) has been extensively investigated for effluent treatment applications. Performance of HC devices or processes is often reported in terms of degradation of organic pollutants rather than quantification of hydroxyl (OH) radicals. In this study, generation of OH radicals in vortex based cavitation device using coumarin dosimetry was quantified. Coumarin was used as the chemical probe with an initial concentration of 100 µM (15 ppm). Generation of OH radicals was quantified by analysing generated single hydroxylated products. The influence of operating parameters such as pH and type of acid used to adjust pH, dissolved oxygen, and inlet and outlet pressures was investigated. Acidic pH was found to be more conducive for generating OH radicals and therefore subsequent experiments were performed at pH of 3. Sulphuric acid was found to be more than three times effective than hydrochloric acid in generating OH radicals. Effect of initial levels of dissolved oxygen was found to influence OH radical generation. Performance of vortex based cavitation device was then compared with other commonly used cavitation devices based on orifice and venturi. The vortex based cavitation device was found to outperform the orifice and venturi based devices in terms of initial per-pass factor. Influence of device scale (nominal flow rate through the device) on performance was then evaluated. The results presented for these devices unambiguously quantifies their cavitational performance. The presented results will be useful for evaluating computational models and stimulate further development of predictive computational models in this challenging area.
Collapse
Affiliation(s)
- Sebastien J De-Nasri
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Varaha P Sarvothaman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Sanjay Nagarajan
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK; Sustainable Environment Research Centre, University of South Wales, Pontypridd CF37 1DL, UK
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Peter K J Robertson
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Vivek V Ranade
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK; Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
8
|
Carpenter J, Pinjari DV, Kumar Saharan V, Pandit AB. Critical Review on Hydrodynamic Cavitation as an Intensifying Homogenizing Technique for Oil-in-Water Emulsification: Theoretical Insight, Current Status, and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jitendra Carpenter
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Dipak V. Pinjari
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Virendra Kumar Saharan
- Department of Chemical Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Aniruddha B. Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| |
Collapse
|
9
|
Cako E, Wang Z, Castro-Muñoz R, Rayaroth MP, Boczkaj G. Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility - A review. ULTRASONICS SONOCHEMISTRY 2022; 88:106081. [PMID: 35777195 PMCID: PMC9253490 DOI: 10.1016/j.ultsonch.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 05/19/2023]
Abstract
The present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading, reactive oxygen species, and different types of emulsification and formation of radicals, formation as well as extraction of formed by-products are systematically reviewed. Among all types of HC reactors, vortex diode and single hole orifices revealed more than 95 % desulfurization yield and a 20 % viscosity reduction in heavy oil upgrading, while multi-hole orifice (100 holes) and slit Venturi allowed obtaining the best biodiesel production processes in terms of high (%) yield, low cost of treatment, and short processing time (5 min; 99 % biodiesel; 4.80 USD/m3). On the other hand, the acoustic cavitation devices are likely to be the most effective in biodiesel production based on ultrasonic bath (90 min; 95 %; 6.7 $/m3) and desulfurization treatment based on ultrasonic transducers (15 min; 98.3 % desulfurization; 10.8 $/m3). The implementation of HC-based processes reveals to be the most cost-effective method over acoustic cavitation-based devices. Finally, by reviewing the ongoing applications and development works, the limitations and challenges for further research are addressed emphasizing the cleaner production and guidelines for future scientists to assure obtaining comprehensive data useful for the research community.
Collapse
Affiliation(s)
- Elvana Cako
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, Chen Jiazhen, Shanghai 202162, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy, Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Manoj P Rayaroth
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland; GREMI, UMR 7344, Université d'Orléans, CNRS, 45067 Orléans, France
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
10
|
Agarkoti C, Thanekar PD, Gogate PR. Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113786. [PMID: 34649311 DOI: 10.1016/j.jenvman.2021.113786] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/28/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Acoustic cavitation (AC) and hydrodynamic cavitation (HC) coupled with advanced oxidation processes (AOPs) are prominent techniques used for industrial wastewater treatment though most studies have focused on simulated effluents. The present review mainly focuses on the analysis of studies related to real industrial effluent treatment using acoustic and hydrodynamic cavitation operated individually and coupled with H2O2, ozone, ultraviolet, Fenton, persulfate and peroxymonosulfate, and other emerging AOPs. The necessity of using optimum loadings of oxidants in the various AOPs for obtaining maximum COD reduction of industrial effluent have been demonstrated. The review also presents critical analysis of designs of various HCRs that have been or can be used for the treatment of industrial effluents. The impact of operating conditions such as dilution, inlet pressure, ultrasonic power, pH, and operating temperature have been also discussed. The economic aspects of the industrial effluent treatment have been analyzed. HC can be considered as cost-efficient approach compared to AC on the basis of the lower operating costs and better transfer efficiencies. Overall, HC combined with AOPs appears to be an effective treatment strategy that can be successfully implemented at industrial-scale of operation.
Collapse
Affiliation(s)
- C Agarkoti
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - P D Thanekar
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - P R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India.
| |
Collapse
|
11
|
Nagarajan S, Ranade VV. Valorizing Waste Biomass via Hydrodynamic Cavitation and Anaerobic Digestion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
- Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
12
|
Thaker AH, Ranade VV. Drop breakage in a single‐pass through vortex‐based cavitation device: Experiments and modeling. AIChE J 2021. [DOI: 10.1002/aic.17512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhijeet H. Thaker
- Multiphase Reactors and Intensification Group Bernal Institute, University of Limerick Limerick Ireland
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification Group Bernal Institute, University of Limerick Limerick Ireland
| |
Collapse
|
13
|
Pandit AV, Sarvothaman VP, Ranade VV. Estimation of chemical and physical effects of cavitation by analysis of cavitating single bubble dynamics. ULTRASONICS SONOCHEMISTRY 2021; 77:105677. [PMID: 34332329 PMCID: PMC8339230 DOI: 10.1016/j.ultsonch.2021.105677] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 05/03/2023]
Abstract
Cavitation events create extreme conditions in a localized 'bubble collapse' region, leading to the formation of hydroxyl radicals, shockwaves and microscopic high-speed jets, which are useful for many chemical and physical transformation processes. Single bubble dynamics equations have been used previously to investigate the chemical and physical effects of cavitation. In the present study, the state of the art of the single bubble dynamics equations was reviewed and certain noteworthy modifications were implemented. Simulations reaffirmed previously reported collapse temperatures of the order ~5,000 K and collapse pressures well over ~1,000 bar under varying operating conditions. The chemical effects were assessed in terms of the hydroxyl radical generation rate (OHG), calculated by applying the minimization of the Gibb's Free Energy method using simulated collapse conditions. OHG values as high as 1x1012OH molecules per collapse event were found under certain operating conditions. A new equation was proposed to assess the physical effects, in terms of the impact pressure of the water jet - termed as the jet hammer pressure (JHP), formed due to the asymmetrical collapse of a bubble near a wall. The predicted JHP were found to be within a range of ~100 to 1000 bar under varying operating conditions. Important issues such as the onset of cavitation and chaotic solutions, for a cavitating single bubble dynamics were discussed. The Blake threshold pressure was found to be a sufficient criterion to capture the onset of cavitation. The impact of key operating parameters on the chemical and physical effects of cavitation were investigated exhaustively through simulations, over the parameter ranges relevant to acoustic and hydrodynamic cavitation processes. Presented methodology and results will be useful for optimisation and further investigations of a broad range of acoustic and hydrodynamic cavitation-based applications.
Collapse
Affiliation(s)
- Ajinkya V Pandit
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, UK
| | | | - Vivek V Ranade
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, UK; Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
14
|
Alahmadi YH, Awadh SA, Nowakowski AF. Simulation of Swirling Flow with a Vortex Breakdown Using Modified Shear Stress Transport Model. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaser H. Alahmadi
- Mechanical Engineering Department, Islamic University of Madinah, Madinah 42351,Saudi Arabia
| | - Sawsan A. Awadh
- Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
- Department of Mechanical Engineering, The University of Babylon, Babylon, Iraq
| | - Andrzej F. Nowakowski
- Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| |
Collapse
|
15
|
Soyama H. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number. ULTRASONICS SONOCHEMISTRY 2021; 71:105389. [PMID: 33221624 PMCID: PMC7786618 DOI: 10.1016/j.ultsonch.2020.105389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 05/27/2023]
Abstract
Hydrodynamic cavitation in a Venturi tube produces luminescence, and the luminescence intensity reaches a maximum at a certain cavitation number, which is defined by upstream pressure, downstream pressure, and vapor pressure. The luminescence intensity of hydrodynamic cavitation can be enhanced by optimizing the downstream pressure at a constant upstream pressure condition. However, the reason why the luminescence intensity increases and then decreases with an increase in the downstream pressure remains unclear. In the present study, to clarify the mechanism of the change in the luminescence intensity with cavitation number, the luminescence produced by the hydrodynamic cavitation in a Venturi tube was measured, and the hydrodynamic cavitation was precisely observed using high-speed photography. The sound velocity in the cavitating flow field, which affects the aggressive intensity of the cavitation, was evaluated. The collapse of vortex cavitation was found to be closely related to the luminescence intensity of the hydrodynamic cavitation. A method to estimate the luminescence intensity of the hydrodynamic cavitation considering the sound velocity was developed, and it was demonstrated that the estimated luminescence intensity agrees well with the measured luminescence intensity.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
16
|
Patil PB, Bhandari VM, Ranade VV. Improving efficiency for removal of ammoniacal nitrogen from wastewaters using hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2021; 70:105306. [PMID: 32795930 PMCID: PMC7786615 DOI: 10.1016/j.ultsonch.2020.105306] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 05/24/2023]
Abstract
The present study reports significant improvements in the removal of ammoniacal nitrogen from wastewater which is an important problem for many industries such as dyes and pigment, distilleries and fisheries. Pilot plant studies (capacity, 1 m3/h) on synthetic wastewater using 4-amino phenol as model nitrogen containing organic compound and two real industrial effluents of high ammoniacal nitrogen content were carried out using hydrodynamic cavitation. Two reactor geometries were evaluated for increased efficiency in removal-orifice and vortex diode. Effect of initial concentration (100-500 mg/L), effect of pressure drop (0.5-5 bar) and nature of cavitating device (linear and vortex flow for cavitation) were evaluated along with effect of salt content, effect of hydrogen peroxide addition and aeration. Initial concentration was found to have significant impact on the extent of removal: ~ 5 g/m3 removal for initial concentration of 100 mg/L and up to 12 g/m3 removal at high concentration of 500 mg/L. Interestingly, significant improvement of the order of magnitude (up to 8 times) in removal of ammoniacal nitrogen could be obtained by sparging air or oxygen in hydrodynamic cavitation and a very high removal of above 80% could be achieved. The removal of ammoniacal nitrogen by vortex diode was also found to be effective in the industrial wastewaters and results on two different effluent samples of distillery industry indicated up to 75% removal, though with longer time of treatment compared to that of synthetic wastewater. The developed methodology of hydrodynamic cavitation technology with aeration and vortex diode as a cavitating device was found to be highly effective for improving the efficiency of the conventional cavitation methods and hence can be highly useful in industrial wastewater treatment, specifically for the removal of ammoniacal nitrogen.
Collapse
Affiliation(s)
- Pravin B Patil
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Vinay M Bhandari
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Vivek V Ranade
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
17
|
Ranade VV, Prasad Sarvothaman V, Simpson A, Nagarajan S. Scale-up of vortex based hydrodynamic cavitation devices: A case of degradation of di-chloro aniline in water. ULTRASONICS SONOCHEMISTRY 2021; 70:105295. [PMID: 32791465 PMCID: PMC7786610 DOI: 10.1016/j.ultsonch.2020.105295] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/03/2020] [Accepted: 07/26/2020] [Indexed: 05/19/2023]
Abstract
Hydrodynamic cavitation (HC) is being increasingly used in a wide range of applications. Unlike ultrasonic cavitation, HC is scalable and has been used at large scale industrial applications. However, no information about influence of scale on performance of HC is available in the open literature. In this work, we present for the first time, experimental data on use of HC for degradation of complex organic pollutants in water on four different scales (~200 times scale-up in terms of capacity). Vortex based HC devices offer various advantages like early inception, high cavitational yield and significantly lower propensity to clogging and erosion. We have used vortex based HC devices in this work. 2,4 dichloroaniline (DCA) - an aromatic compound with multiple functional groups was considered as a model pollutant. Degradation of DCA in water was performed using vortex-based HC devices with characteristic throat dimension, dt as 3, 6, 12 and 38 mm with scale-up of almost 200 time based on the flow rates (1.3 to 247 LPM). Considering the experimental constraints on operating the largest scale HC device, the experimental data is presented here at only one value of pressure drop across HC device (280 kPa). A previously used per-pass degradation model was extended to describe the experimental data for the pollutant used in this study and a generalised form is presented. The degradation performance was found to decrease with increase in the scale and then plateaus. Appropriate correlation was developed based on the experimental data. The developed approach and presented results provide a sound basis and a data set for further development of comprehensive multi-scale modelling of HC devices.
Collapse
Affiliation(s)
- Vivek V Ranade
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK; Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Varaha Prasad Sarvothaman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Alister Simpson
- School of Aerospace and Mechanical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Sanjay Nagarajan
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| |
Collapse
|
18
|
Liu C, Li X, Li A, Cui Z, Chen L, Li Y. Cavitation onset caused by a dynamic pressure wave in liquid pipelines. ULTRASONICS SONOCHEMISTRY 2020; 68:105225. [PMID: 32615403 DOI: 10.1016/j.ultsonch.2020.105225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
When liquids flow in the pipelines, the onset of cavitation can be characterized by a variant of the Euler number known as the cavitation number (CN), which is based on the velocity and denoted by C in this paper. Conventionally, cavitation is considered to be induced when C ~ 1. However, experimental observations and several pipe bursts indicate that the CN may incorrectly predict the onset of cavitation. For example, when leakage occurs in the pipeline or a valve in the pipeline is opened, the resultant pressure loss generates a dynamic pressure wave with a small amplitude, which may lead to bubble formation, even though C ~ 1 is not satisfied. Hence, this paper proposes another CN based on the amplitude of the generated dynamic pressure wave, rather than the velocity, for ascertaining the onset of cavitation. The validity of the proposed CN was verified through experiments and a case study. The results indicated that the proposed CN can be effectively used for cavitation prediction induced by pressure fluctuations and for investigating phenomena such as pressure fluctuation, leakage, and corrosion in liquid pipelines, tanks, and pressure vessels, as well as the safety design of liquefied natural gas tanks and tankers.
Collapse
Affiliation(s)
- Cuiwei Liu
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao 266580, China.
| | - Xuejie Li
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao 266580, China
| | - Anqi Li
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao 266580, China
| | - Zhaoxue Cui
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao 266580, China
| | - Lei Chen
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao 266580, China
| | - Yuxing Li
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao 266580, China
| |
Collapse
|
19
|
The Influence of Inflow Swirl on Cavitating and Mixing Processes in a Venturi Tube. FLUIDS 2020. [DOI: 10.3390/fluids5040170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A study of the mixing flows (Schmidt number = 103) in a cavitating Venturi tube that feature linear and swirling flows is presented in this paper. The Large Eddy Simulation (LES) turbulence model, the Schnerr–Sauer cavitation model, and the mixture multiphase model, as implemented in the commercial CFD ANSYS FLUENT 16.2, were employed. The main emphasis is spending on the influence of different inlet swirling ratios on the generation of cavitation and mixing behaviors in a Venturi tube. Four different inflow regimes were investigated for the Reynolds number Re = 19,044, 19,250, 19,622, 21,276: zero swirl, 15% swirl, 25% swirl and 50% swirl velocity relative to the transverse inflow velocity, respectively. The computed velocity and pressure profiles were shown in good agreement with the experiment data from the literature. The predicted results indicate that the imposed swirl flow moves the cavitation bubbles away from throat surfaces toward the throat axis. The rapid mixing between two volumetric components is promoted in the divergent section when the intense swirl is introduced. Additionally, the increase in the swirl ratio from 0.15 to 0.5 leads to a linear increase in the static pressure drop and a nonlinear increase in the vapor production. The reduction in the fluid viscosity ratio from μ2μ1=10 to μ2μ1=1 generates a high cavitation intensity in the throat of the Venturi tube. However, the changes in the pressure drop and vapor volume fraction are significantly small of pure water flow.
Collapse
|
20
|
Simpson A, Ranade VV. 110th Anniversary: Comparison of Cavitation Devices Based on Linear and Swirling Flows: Hydrodynamic Characteristics. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02757] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alister Simpson
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| | - Vivek V. Ranade
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| |
Collapse
|