Bugada LF, Smith MR, Wen F. Rapid Identification of MHCII-Binding Peptides Through Microsphere-Assisted Peptide Screening (MAPS).
Methods Mol Biol 2022;
2574:233-250. [PMID:
36087205 DOI:
10.1007/978-1-0716-2712-9_11]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CD4+ T cells play a vital role in the immune response, and their function requires T cell receptor (TCR) recognition of peptide epitopes presented in complex with MHC class II (MHCII) molecules. Consequently, rapidly identifying peptides that bind MHCII is critical to understanding and treating infectious disease, cancer, autoimmunity, allergy, and transplant rejection. Computational methods provide a fast, ultrahigh-throughput approach to predict MHCII-binding peptides but lack the accuracy of experimental methods. In contrast, experimental methods offer accurate, quantitative results at the expense of speed. To address the gap between these two approaches, we developed a high-throughput, semiquantitative experimental screening strategy termed microsphere-assisted peptide screening (MAPS). Here, we use the Zika virus envelope protein as an example to demonstrate the rapid identification of MHCII-binding peptides from a single pathogenic protein using MAPS. This process involves several key steps including peptide library design, peptide exchange into MHCII, peptide-MHCII loading onto microspheres, flow cytometry screening, and data analysis to identify peptides that bind to one or more MHCII alleles.
Collapse